EXPERT INSIGHT SECOND EDITION

Mastering
PLC Programming

The software engineering survival guide to
automation programming

M.T. WHITE

<packt

Mastering PLC Programming

Second Edition

The software engineering survival guide
to automation programming

M. T. White

Mastering PLC Programming

Second Edition

Copyright © 2025 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, exceptin the case of brief

quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee
the accuracy of this information.

Portfolio Director: Rohit Rajkumar
Relationship Lead: Kaustubh Manglurkar
Project Manager: Sandip Tadge
Content Engineer: Anuradha Joglekar
Technical Editor: Tejas Vijay Mhasvekar
Copy Editor: Safis Editing

Indexer: Tejal Soni

Proofreader: Anuradha Joglekar
Production Designer: Aparna Bhagat
Growth Lead: Namita Velgekar
Marketing Owner: Nivedita Pandey

First published: March 2023

Second edition: January 2026
Production reference: 1241225

Published by Packt Publishing Ltd.
Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK.

ISBN 978-1-83664-255-8

www . packtpub.com

http://www.packtpub.com

To the Big Man upstairs who's been guiding my every step

—M.T.

Contributors

About the author

M. T. White has been programming since the age of 12. His fascination with robotics flourished
when he was a child programming microcontrollers, such as Arduinos. He currently holds an
undergraduate degree in mathematics, a master’s degree in software engineering, a master’s in
cybersecurity and information assurance, as well as an MBA in IT Management. M.T. is currently
working as a senior DevOps engineer and is an adjunct CIS instructor at ECPI University, where
he teaches Python, C, and an array of other courses. His background mostly stems from the auto-
mation industry where he programmed PLCs and HMIs for many different types of applications.
He has programmed many different brands of PLCs over the years and has developed HMIs using
many different tools. Other technologies M.T is fluent in are Linux, C#, Java, and Python. Be sure

to check out his channel AlchemicalComputing on YouTube.

I'want to thank my mom for putting up with the 4-am writing sessions.

About the reviewer

Oleg Osovitskiy is a senior firmware engineer with over 25 years of expertise in industrial
automation. He holds IEC 61508 FS Eng certification (#11605/15) and IEC 62443 Cybersecurity
Specialist certification (#658/22). His career includes extensive work as a control engineer, where
he designed and implemented technological and emergency algorithms for diverse industrial

facilities.

He possesses deep technical proficiency in PLCs and I/O drivers, with substantial experience across
industrial communication protocols, such as Modbus, HART, CANopen, EtherNet/IP, and others.
Based in Quebec, Canada, he currently leads firmware development for multiple mission critical

safety PLCs, ensuring compliance with rigorous operational and safety standards.

I'want to thank my wife and two wonderful daughters for their unwavering support and understanding of
the dedication required to pursue new skills and knowledge in our ever-changing, demanding world. They

remain my greatest source of purpose and joy.

Table of Contents

Preface XXV
Free Benefits With YOUT BOOK ...cceeeeeieeeenecereenneceeeereeseesensesessesssscsssssssssssssssesssssssesssssssssssnes XXX
Part I: Advanced Structured Text 1

Chapter 1: Advanced Structured Text: Programming a PLC in

Easy-to-Read English 3
Free Benefits with Your Book ceeeneetteeeeiiaattese s aaa ettt e s s aaa et et e s s e nnaseeeees 4
Technical requirements ceeeeseetttieiiisaatttte s s b aa et e s e s b rat et e e s s s b bt st e e s e ssnnnanees 4
Exploring the IEC 61131-3 Standardcccceeeeeeeeccessssnneeeeccssssnneeeecccsssnssseeescsssnnssees wee 5

IEC 61131-3 and OOP ¢ 6

Needed software and learning approachcceeeeeccsveeccsseeccssineecnsseeecsssneecssssesessssecsssnseses 7

Programming software o 7

Error handlingecceeeeeevueneeeiicciinsneneecreccnnnes cerereetteieeissaaat et tes s aaatae s nnaassessssananas 8

Understanding the TRY-CATCH block e 11

FINALLY statements e 13

Identifying and handling errors o 14
Exception variables o 14

Handling custom exceptions e 15

Understanding pointers cereeseetteietiisaat ettt ee s baa e s e s bbb sttt s e s bbb Rt et s e s s s s bR aa e e e sesssssnns 16
Representing PLC memory e 17
General syntax for pointers ¢ 17
The ADR operator o 18
Dereferencing pointers ¢ 19
Handling invalid pointers e 20

Catching an invalid pointer « 20

viii Table of Contents

IF statements for invalid pointers e 21

TRY-CATCH for invalid pointer variables o 21
Discovering references ¢ 22

Declaring a reference variable o 22

Example program e 23

Checking for invalid references o 24

State machines eeeeeeeeerereeernnrsesersrsrssessrrrrsesrnrssesrrsssenrrsesessrrsessnsrnseans ceee 25

State machine code o 26
State machine mechanics ¢ 26

EXPEIT SYSTEIMS coceucrcenceccsceconcscsscscsosscsosecsssscsossesesessescssossesssessescsssssesssessoscsssscsssnssssssessessssoss 27

Knowledge base ¢ 28

Expert system example ¢ 29

Final project: Making a simple state machinecccceeeeeeerscneeenenee. 30
State machine design ¢ 30
Variables for the state machine o 31
Exploring state machine logic e 31
Case 1 — non-running state machine o 32
Case 2 — running state machine e 33

Case 3 — state machine exception thrown e 33

Chapter Challengeccccceercrvveriiisseriisiseiiissssticsssseiisssstiesssssssssssstsssssssssssssssssssssssssssssssssssss 34
SUMMATY .cereenneicrrennnicerenneceeenns eeeeseseettantiettttttstettttsetttnrssetarsstesarssssanrsssssrnsssanannnne 34
QUESTIONS ceveeeeneeenneceenecenecccensceessccsssecsssessssens eeeeeeeseeneseennsecensessrnesassrsnrsssersessnnsnnnsannen 34
Further readingccceceeveveeeeeicciscneneeticcssssnneetiecsssssnesceenees cerereetttieeissaaastsese s sannans 35

Chapter 2: Complex Variable Declaration: Using Variables to Their Fullest 37

Technical requirements cereenestteeessanaaesenes S 38
Understanding constants .. cereeneetteeessantattesessanaasseessannns cessssnnentessesssnnnaneesesssnsens 38
INVeStiGating AITAYS .cccccveeceeeeeeccssssneeeeeccssssnnseeeescssssnseseeesces cesssnnteeeessesssnnnnsasssssnnnanaane 40

A quick review of arrays e 40
Array declaration e 41

Array logic e 41

Table of Contents

ix

Multidimensional arrays e 43
Multidimensional array pattern e 43
Working with n-dimensional arrays e 43

Looping through an n-dimensional array e 45

Exploring global variable liStsccccceveerecssnerecssneeccssnenccssnneccssnenecnn
What s a global variable? e 47
Dangers of global variables e 47
When to use a global variable e 47
Creating a GVL e 48
Demonstrating a GVL e 49
Organizing GVLs e 50
Safety considerations for global variables o 52

Understanding structs cereereetttiesiisaaat et ses st ane s e se s snaaaaesessasans

Declaring a struct e 52
Implementing a struct 53
DUT wizard e 54
Multiple objects o 55
Inheriting with structs ¢ 56

Getting to know enums

...............

Final project: Motor CONtrol Programcceeeeessecesueessnecesaecsssncessncens

SUMMATY ..cereenneicrnennniceeenneceeenns eeeesesetttattiettentsttettasssttttasssetarsssesarsssssarssssssrnssssanannnne

QUESTIONS cevveeeneerenecreeccerssceessecesscessecssssssssscssssesssssssssssssssssssesssssssssessssesssssssssssssssssssssssnsssanee

Further readingccceceevvveeeeerccsssseneeeicccsssnneeceenns

Chapter 3: Functions: Making Code Modular and Maintainable

46

52

58
60
63
63
63

65

Technical requirements ceeeneneeeneas cereeneetieeesaens

What is modular COde?ceeeenreeeeeeeneeeeeeeecceressecceesssscccsssssecces

A definition of modular code ¢ 66

How code is organized e 66

X Table of Contents

Strategies for creating modular code o 67
Limiting the amount of code in the PLC_PRG file ¢ 67
Separation of responsibilities o 68

Why use ModUular COAe?cuiinuiinrienrnensseeisserensnecnsneesneessecssaecssssessssesssssessassssasessasosascsss 68

EXPloring fUnCionscoeeeeiieeisneeiseiisnienieenisenssneessseessseessssessssesssseessssessssessssesssessssessssees 69
The art of naming functions e 69
What goes into a function? e 70
Creating a function e 71

EXQMINING rETUIT LYPES ..eeeeeeerecirsssrnrereeecssssssssseeeecsssssssssesssssssssssssssssssssssssssssessssssssssssessssass 75

The RETURN statement e 76

Understanding arGUIMENLTSeeceecsveeeecsssreecssseecsssseessssssescssssessssssesssssssessssssesssssssssssssasssssnes 78

Named parameters ¢ 79

Default arguments o 81

Calling a function from a fuNCtion!ccccciiiicviiinssiiiiisneiinissenisissnissssenissssssissssssssssssssses 83
Simplifying your functions with facadescceeeevsueesserecrniinreensnecssnensneensnnecsnecsseeesaeenns 83
Final project: TeMpPerature UNit CONVEITETccccererssserecssneesssssescsssseessssssessssssssssssssesssssseses 86
Chapter Challengeccccceeiciineeiiiisneiiiisneicssneiinssniicssneecsssnnesssssnesssssssessssssessssssesssssessssssseee 88
SUMMATY .ceeeerenceencennccrenccrenccnes ceeeeeenntetnnectaneennensanes ceeeeeteteetancennntenneecnanens . 88
QUESTIONS «evevereereeeeeecerrssscecsssssscsesssssessssssscssnssssessnssssssssssssessssssssssssssssssnsssssssssnsssssssnsssssnnnase 89
FUIther reading ccccceieceveiicssvneiissnneicsssniicsssseicssssiissssstsssssssnssssssesessssssssssssssssssssssssssssssssssens 89

Chapter 4: Object-Oriented Programming: Reducing, Reusing,

and Recycling Code 921
Technical requirements N 92
WHhAtiS OOP? ...cuuueiiiiirneiiissneicsssnenesssstessssssnsssssstsssasssses 92

What OOP is not 93

Why OOP Should De US€dccoevuueiiiisniiicssnniicssniicsssnneicssnneecsssneescsssnescssssessssnne 93
The benefits of OOP ¢ 94
The four pillars: a preview e 95

Exploring function blocks . ceeeeessreesneesatesate bt e e bt e b a s e b a s e b s s e bR e e bR e s bR a s R bR e b a e e bR e e bees 95

Table of Contents

xi

Exploring methodscccueeecssnrecnssneccssneeccssneeecnns
Adding methods ¢ 99
Challenge « 101

Getting to KNOW ODJECLS ...ueeeereeiecssrneneeecccsssnnneeeecccsnnee

Function block Namingc.ccceeeevveeeccssneeccssnencsssneeccssneecsssnseccssnnenes

Getting to know getters and SEtLErsccevverrecssneeecsanne
Getting to know properties o 108
Using the Get method e 110
Using the Set method e 110
The rules of properties o 111

Understanding recursion and the THIS keyword

The THIS keyword e 112

Recursion in action e 113

Using function blocks in LLceeecvuercsssnnescsssnencsne
Exploring the power of ST in LL e 115
Challenge o 117

..........

Final project: Creating a unit CONVEItercccesveeeecssancecssaneees
SUMMATY .ceeerencrenccennccrencceenccnes ceeeteeenttetaniettnictanctansennensananns
QUESTIONS .eveeereeeeeneneceeenssccessssssccsssssscssssssscssnssssosssnsssssnssssosanne
Further readingccceeeveiicssnercsssneicsssniicsssneicsssssrscssssesessnnes

Chapter 5: OOP: The Power of Objects

Technical requirements cererreessnteessnnressnnns

Understanding access specifiers . ceesrreessnnreessanaaeenes

Exploring the different types of access specifiers o 124
PRIVATE access specifier in action e 125

Exploring the pillars of OOPccevvvueercsnncescsnneees

Encapsulation versus abstraction e 128
Inheritance ¢ 130

Polymorphism e 135

xii Table of Contents
Exploring the PROTECTED accCesSs SPECIfIET cccvvurriirsurircssnrecsssnneicssnneecssnneccssseecsssnnessssnnes 137
Inheritance Versus COMPOSItIONueeeeeeeerrsssneeriesssssnseerecsssssssessessssssssssssesssssssssssesssssssssnns 139

When to use composition e 139

Composition in practice 140
EXamining iNtErfacesccuceieivcericisiniiisssneiinsseiicsssseicsssssescsssessssssssssssssessssssssssssnsesssseses 143
Final project: Creating a simulated assembly linecccoeveeeecsvnreccssneeicssnneccssneeccssnneecsnnes 148
SUINIMATY .ieuuieenniinneennnceeneceeneietanccrsscesssseessssessscesssscsssssssssssssscssssssassssssssssssesassssassssanse 150
QUESTIONS «eveenreeerennecceresesccesessssccesssssccssssssessssssssssssssssssssssssssssssssssnssssssssasssssssssssssessnnssssssnnns 151
FUIther radingeeeeeeecrisnveeeiiiiisineneteiciissssnneetiecisssssnseriesessssssssseescsssssssssesssssssssssssssssssssnns 151
Chapter 6: Best Practices for Writing Incredible Code 153
Technical FEQUITEMENTS ..uuueereeeeeiirsssrnereeeccsssssnneeeeecssssssssereecssssssssressssssssssssesssssssssssesssssns 154
What is technical debt? ...cueiecivveeiiissiiiissineeccsseniisssneeccssssesessssseesssssesessssssssssssesessassssssseses 154
Understanding Nnaming CONVENTIONSueeeersseeeccsssreecsssrecssssseecssssencsssssscsssssessssssescsss .. 155

Casing conventions e 155

Proper variable names ¢ 156

Properly naming methods and functions e 156

Naming function blocks e 157
Exploring code dOCUMENTALION ...cceicvverricrsnriesssnneicssntiessssteecsssseicsssssessssssescsssssesssssessssnses 157

Utilizing self-documenting code » 158

Coding to variables ¢ 159

Code commenting ¢ 160

Good comments e 161
Bad comments e 161

Understanding and eliminating dead codecccceerrereccssneecsssneeccssneccsseneccssnnnees .162
Keeping it SIMPLE eeceieeeriirireeiiiiiiiisrnetiiiiisissneetiesssssssseesesssssssssssssssssssssssssesssssssssssssssssssssnns 163
What t0 100k for in @ COAe TEVIEW ...uuueeieirerircisnnienisneencssnneesssneensssnneessssneessssssescsssssesssanes 164
Things to avoid in software engineeringcccceeceerervverrcsssnerssssnrscssssesssssssrsesssssses 166

Fitting a problem into a solution e 166
Fixing hardware with software o 166

Having only one code reviewer o 167

Table of Contents xiii
Final project: Performing a simulated code reVvieWccceeeecsneeicssneeccssnneccssnnneccsnnne 167
SUMMATY .ceeeerencrencennccrancceenccnns ceeeeeetntetttnetnttttttttetantettnsctasessanssanesanssansssansssanes 168
QUESTIONS «eeeerreeeennnseceeessscccsrssssccesnsssesssssssesssssssssssssssessssssssssasssssssnssssssssasassssssnssssassnsssssssnnes 169
Chapter 7: Libraries: Write Once, Use Anywhere 171
Technical requirements ceseeseeettieeiisaattttes s bbaa et e s s s bbbttt e s e s s b s b bttt e e s s ssnsaaeeerssnns 172
INVeStigating IDTATiesiccivveieiiseiiissniisssnticsssseicsssssisssssssissssssssssssssssssssssssssssssssssessnssses 172
Libraries versus frameworks ...c.cccceeerceiicsssneicsssniiisssneicssssticsssseesssssesesssssessssssssessssssssssnses 173
Understanding libraries ¢ 173
Understanding frameworks e 174
Importing a libraryc.eeeeeeeeeciscneeeenne. cereeesettieeiisnaaattesssssata et e sesssssannaasssssnnnatans 174
Installing a lIDrary ...ccccccveeeeieiiiniseeiiiiciiisneteticcissnneeteeccssssnsseessccsssssssseseesssssssessecssssnns 175
Using a library in Ladder LOGIC cccccvueeeersericssnercsssnerecssneecsssssesssssessssssescsssssssssssssssssssssssses 178
Guiding principles for library developmentcccoceeeccseeicssnricsssneiicssnercsssneeccssnseccssnnee 180
Rule 1: Remember KISS o 181
Rule 2: Abstraction and encapsulation e 181
Rule 3: Use the Fagade pattern liberally ¢ 182
Rule 4: Documentation e 183
Semantic versioning e 188
Final project: Building a custom HBIaryeccicceicvveeiicciiisieniiiccssicsneneissccssssnnecesessssnees 188
Requirements « 188
Implementation ¢ 189
Project improvements ¢ 194
Documentation hints e 194
Distribution e 195
Get This Book’s PDF Version and Exclusive Extras e 196
SUINIMATY .eeerieennceennceennceeencceencctancerancctsscecesscesssscsssscsssscssssssssscssssssssssssssssssscsasssssssssanse 196
(00 T=1] n 0) 2 1-JSu NN 196

Xiv

Table of Contents

Part Il: Software Engineering for Automation

197

Chapter 8: Getting Started with Git 199
TeChNical FEQUITEMENTES .cveereeeriicosssssnenriessssssssessssessssssnssssssssssssssasssssssssssssssssssssssssssssss 200
What i VErsion CONLIOL?ciicvveiiiciieriiissneiiiisnticsssnniiissnneicssnesssssssessssssessssssssssssssesesssnes 200
What Version CONTIOLIS NOT w.eicieeeecssneeesssaneecsssneesssssreecsssseessssssesssssssessssssessssssessssssassssanes 202
Source control is only for large teams » 202
Source control is a security risk e 202
Version control is the same thing as a shared file system ¢ 203
UNderstanding Gitcccccceeeccsseeeccssneecsssneecsssseccsssseecsssseessssssessssssesssssssessssssssssssssessssssassses 204
Installing Git on Linux e 204
Fedora installation e 204
Debian installation e 205
Installing Git on Windows e 205
Git Bash installation 205
WSL installation ¢ 205
Understanding GItLaDeeeeeiiiiciiiiieeeiticiiiiinneetiicisseneetiessssssssseessessssssssesssesssssssssssssess 206
USING the GIt CLI auuueeeeiiiiiiireneeriecissssneeeeeecsssssssstescssssssssssesesssssssssesssssssssssssssssssssans 207
Cloning arepo « 208
Implementing branches ¢ 210
Checking out a branch « 213
Merging code changes ¢ 214
Understanding Brancheseeeceeccineeeeiiiicinineeeeiiciiinnetticcsssesesesesssssssssseesssssssssssessesssns 215
EXPloring PLCOPEN XML ..uueeeiiiiiisssneeeeeiccsssssnnseeecsssssssssssesscsssssssssssesssssssssssssssssssssasssssssnns 217
Final project: Modifying a PrOJECt c....cceeerreessueecsunensnecssnecssuecssuecsssnesssnessssessssesssasessasessans 219
Final project: Solution e 220
SUINIMATY ieererenecienneeennceeeecernestranceseesesssssessssesssssssssessssssassssssssssssssssssssssssassesassssassssanse 220
QUESTIONS «evevrreeerrreeeceresssccessssscesssssccssssssecsssnses 221
FUIthEr TAdING ..eeeeeeeeiiriiueeeiiiiiiinentetiiiiiseneetiecisssensetiesssssssssssesssssssssssessessssssssssssesssssens 221

Table of Contents XV

Chapter 9: SDLC: Navigating the SDLC to Create Great Code 223
Technical requirements ceeeenentteeessannaaeneees cerenesttesessanaaenessssanenes 224
Understanding the SDLC .. cerenentttteeissannaateseees cerenssttteeeiisrastettessssaasaeesesssanans 224
The general steps of the SDLC ceereeeessneesessaneeessaneesessanaessanaasessasansssarsasessananes 226

Gathering the requirements ¢ 226
Designing the software ¢ 228
Building the software ¢ 229
Testing the software ¢ 230
Deploying the software o 231
Maintaining the software o 231

Understanding how to implement the SDLC . cesseeeessnteessnttessstteesnatesssatsessnstaessanaee 232

The Waterfall method e 233
The V-model « 233
The Agile framework ¢ 234
Final project: Creating a simple temperature CONVEITETcceerueersuressaeessseessasessssecssacesses 236
Gathering requirements for the program e 237
Designing the program e 237
Building the project e 238
Testing the program e 239
Deploying the project o 240

Maintaining the program e 240

SUMMATY eeceereenncenennnccceennnccenens ceeesseecerenancesannsncsenans ceeeeseeerennneeeeannsesarannnes 240
QUESLIONS .eevvveeeerreeeccerssseccerassseccsssssocssssssocces eereseeerrnssecernrnssesarsseceesarrrsesansrsesessrrsesas 241
Further readingccceecevvveeeeerccssssnneeereccsssnneeeeenees cereeeneetteeissnnaateesessanans 241
Chapter 10: Architecting Code with UML 243
Technical requirements cereeneetteesesannaneeesees cereeesettteeissnraattesessssaansatsesssnnas 244
Understanding UMLcccceeeeicssserecssseecssssensssssesssssssssssssesssns 244

Whatis UML used for? e 245
Why is UML important? e 246

Xvi

Table of Contents

The basics of drawing a UML diagram ..
Representing function blocks in UML e 246
UML name e 247
Representing methods and variables ¢ 247
Representing access specifiers o 248
UML data types and arguments e 248

Understanding UML relationship lines .

...... wee 246

...... . 249

The basic UML relationship symbols e 249
UML for inheritance e 249
UML for composition e 250

Converting UML diagrams into code
Engine function block e 251
Transmission function block e 252
Brakes function block ¢ 252
Vehicle function block e 252
Car function block ¢ 253
Truck function block e 253

Chapter challenge ¢ 254

Final project: Modeling a program representing multiple cars

Getting started e 255
Relationship analysis e 255
Relationship summary e 256
Basic UML diagram e 256
Chapter challenge ¢ 257

SUMMATY .eeeeeeencenncennccennceanecns

QUESTIONS ceueeeeneerenecrenecreeecesseesesssssssscsssesssanssssassssssssssssssanseses 258

Chapter 11: Testing and Troubleshooting

Technical requirements
Difference between debugging and testing
What is debugging? 262

..........................

Table of Contents xvii

What s testing? e 263

Verification and VAlIdAtiOn ...eeecceeeeececeeeeeccceessscccsssssccsssssssccssssssccssssssccsssssecssssssscssssssesssses 263

What is verification testing? ¢ 263

What is validation testing? ¢ 263

Various types of testing ceesttesssttiesstttes sttt eesabte s bttt e bbtte s eba s s e bbb e sessebatesssnaesessanes 264
Exploring test cases o 264
Unit testing ¢ 264
Functional testing ¢ 266
Regression testing e 267
Integration testing e 268
Automated versus manual testing ¢ 268

Debugging tools and teChNIQUESeeeeeeeeiiiiveeeiiciiiiisneeiiecesisneesiescssseneseeesessssnens e 270

Breaking down the debugging process ¢ 270
Understanding the hardware pitfall ¢ 272
Practicing print debugging ¢ 272
Understanding visual analysis e 277
Exploring debuggers ¢ 278

Exploring breakpoints e 278

Exploring stepping e 282

Debugging With ChatGPTcccccivvvreereeccsssssnneeecccsssssnseeseccssssssssesecsssssssssssesscssssssssaes 284
Constructing prompts e 284
Troubleshooting code with Al « 285
The future of Al troubleshooting ¢ 286

Al pitfalls « 286
Troubleshooting: A practical example ... cereseettteesisnnaattesessanarattesessasnaataesees .. 287
Chapter challenge ¢ 292
SUMMATY eceeeennnicenennnccceennnceennns etesetesetttetesitttttistestttisttstetestestttesessttessasseresssesane 293
QUESTIONS ceeeeeeneeeneecrenecenseccesscsssscsssscsessessnsens eeeeeenseernneennsernssesnnseeennsesarssarssssnnsesnnans 293

Further readingccceceevvveeeeerccssssnneeercccsssnneeeennens N 293

xviii

Table of Contents

Chapter 12: Advanced Coding: Using SOLID to Make Solid Code 295
Technical requirements N 296
Introducing SOLID Programmingccccceesseseeeeecssssssssseesccssssnssessecssssses 296
Benefits of SOLID Programmingccceeeeessseecsssssescssssersssssseesssns 297
The governing principles of SOLID programming ceereeressnenessanenessaneesssansassssananes 298
The single-responsibility principle 298
Implementing the SRP ¢ 299
The open-closed principle « 303
Implementing the OCP ¢ 303
Liskov substitution principle ¢ 308
Implementing the LSP e 309
The square function block e 310
Interface segregation principle o 315
Implementing the ISP 316
Dependency inversion principle e 317
Implementing the DIP ¢ 318
Final project: design a painting Machineccccceveveeeiiieiiiscneetiiccnisisneneeeiccsssseneeesessssanes 322
SUMMATY .eeeerencrenceencraneceancenes ceeeeeeentetttnetnttitttntetantentnictassesarssanssnnssansssanessanes 324
(010117 n 0] » 1-JSN N eeeeeresserensrassasassssarsesenresennsssrnsesnnsesanees 324
FUIther reading ccccceeeceveeicissneicssseiicssnticsssneiesssseisssssensssssesssssssssssssssssssssssssssssassssssssssssns 324
Part lll: HMI Design 327
Chapter 13: Industrial Controls: User Inputs and Outputs 329
Technical requirements ceseeeeessanteesiarteesttteesssttteessstteesbateeesatteessbatesesrtaesessatesras 330
Introduction to HMI designccccceeeessnneeecsaneees cesssssnnenteesessssnnnnanessssssasnsananeses 330

How are HMIs made? o 331

Basic principles for designing an HMI e 332
The responsibility of an HMI 332

Adding an HMI e 333

Table of Contents

Xix

Exploring common HMI controls cesnreeeesnnneees

Flip switches e 335
Push switches ¢ 336
Buttons e 337

LEDs e 338
Potentiometers ¢ 338
Sliders o 339

Spinners e 340
Measurement controls e 341
Histograms e 342

Text fields 343

Control properties e 346

Final project: Creating a simple HMI

Requirements for the HMI o 348
Designing the HMI ¢ 348
Building the HMI o 349

SUMMATY eoceereennccenennncccceennceennns ceeeessecerenancesannsesenans

QUESLIONS .eeevvreeeeereecceesssoccerassseccsssssocssssssonces

Further readingccceccevvveeeeerccssssneeeeeiccssssnneeeeeccsssnneeeens

Chapter 14: Layouts: Making HMIs User-Friendly

Technical requirements ceseresessaneessssnnessnnane

The importance of colors .. N

Backgrounds e 358

Red, yellow, and green ¢ 360
Control colors e 361
Labeling colors e 361

Understanding grouping/positionceeeeressssesssesences

Best practices for blinkingcccccceeeesveercsssnneccssnencssnenes

Blinking a component ¢ 366

Animation e 369

XX

Table of Contents

Organizing the screen into multiple layouts

Creating a visualizations screens e 370
Changing the default screen o 373
Navigating between screens e 376
Hiding components ¢ 378
Final project: Creating a user-friendly carwash HMI
HMI goals e 379
PLC code ¢ 379
HMI layout ¢ 380
Improvement challenges ¢ 387

Summary

..

Questions

Further reading

Chapter 15: Alarms: Avoiding Catastrophic Issues with Alarms

Technical requirements

What are alarms?eeeeeee

When should you use an alarm? ¢ 391
Cybersecurity alarms e 391

What should an alarm say? e 392
Logging alarms e 392

Alarm configuration: info, warning, and error setup .

..........

Alarm groups e 395

Alarm HMI components e 397
Setting up an alarm banner ¢ 398
Setting up an alarm table « 400

PLC alarm logic

Alarm acknowledgment

Acknowledging alarms logic e 409

Table of Contents xxi
Final project: motor alarm SYStemMcccceevceeeriessssssnneeriscsssesnssesscssssssnneessesssssens .. 410
Getting started e 410
Design/implementation of the HMI o 411
SUMMATY .eeeeenncennccennccenncceanncns csecssesncsesntensussesussesntesseseisesessusessuressaressaressancesanee 413
(01017 w0 + 1-J00N RPN 413
FUIther reading ccceeeecvseeeicssneiicssnniicssniicnssnnicsssneicsssenesssssescssssesesssssessssssesssssssessssssssssssses 413
Part IV: Putting Knowledge Into Action 415
Chapter 16: DCSs, PLCs, and the Future 417
What is INAUSEIY 4.0? aeciiciverieriseiisssssniesssssissssssssssssssisss 418
WRALIS IOT? cecueeerneessneccsnrecsneessneessnnesssnessssessssesssssessasessssessssessssssssssssssssssaessassassae 418
Cybersecurity and [oT e 419
Exploring distributed and parallel cOMPULINGuuueeeerreiisircreeeiincsisissnneeerecsssssneeerecsssens 420
Understanding distributed computing e 420
Understanding parallel computing e 421
EXPlOring NEtWOTIKING ...ccicivveriessseriisssnricsssseiisssnticsssseisssssstscssssessssssssssssssessssssssssssssessssans 422
TCP/IP o 422
UDP ¢ 423
PLC/automation device communication e 424
Modbus e 425
Profibus ¢ 426
Profinet ¢ 428
EtherCAT ¢ 428
EtherNet/IP o 430
Exploring DCSs S 430
DCS applications e 431
Understanding the difference between PLCs and DCSs e 432
EXPLOTINg SCADA ..cciiivveiiisssneresssnneicsssstiesssssescssssesssssssessssssssssssssesssssssssssssssssssssessssssssssnses 432

xxii Table of Contents
EXPlOring CYDEISECUTILY ciccvvereecssnrecssneicsssnreecssnneecssnrescsssseessssseessssssessssssssssssssessssssassssans 433

Understanding reconnaissance o 433

Avoiding the use of default passwords e 434

Configuring firewalls ¢ 434

Whitelisting and blacklisting ¢ 435

Implementing encryption e 435

Turning off unused ports e 436

Exploring segmentation ¢ 436
Emerging teChNOlOGIeseeeeiiiiiiveneeiiiiiisiinneeieiiiiinentteiccssssnneeeiecssssnsseeseccsssnsssseesssnees 437

Exploring microservices o 437

Prompt engineering « 438

Understanding digital twins e 438

The cloud in industrial settings ¢ 439
SUMMATY .eeeeeeencenncenncenncceanecens cavsssenveservssonvassavessanassannssavnsernassanrssennssanrssennssennes 439
QUESTIONS ceuvereneerenecrenecrsescersessessesssanssssassssssssssssssansoses 440
Chapter 17: Putting It All Together: The Final Project 441
Technical FEQUITEIMENTS ..eiiirrvrricssseressssnricsssseressssescsssssrssssssessssssenssssssesssssssssssssessssasssssns 443
PIrOJECT OVETIVIEW eveeeveeeeeeeeeeeeeeeeeeeeeetenesenesesss 443
Gathering the reqUITEMENtSueeeeeereecriiiseetienississnneteeecsssssnseesecsssssnnsees 443
HMI design ... cersesetieieiisaatttie s bt ettt e et b ettt e e s s bbb s et s e s s bbb et e e s s bbb R e et s e s s s s ennanetes 445
HMIImpPlementation ...eeeeeeeeecissssneeeecisssssnneeeiecsssssssseeeessssssssssesscssssssssssssssssssssssssssssssnss 446

LED variables e 446

Acknowledgment variable ¢ 447

Spinner variables/setup e 447

Gauge variable/setup » 448

Alarm table variables/configuration e 449
Error class setup o 450
Warning class configuration e 451
Info class configuration e 451

Alarm table configuration e 451

Table of Contents xxiii
PLC code design cerereeessnneeessanneeesananane . 452
Implementing the PLC codeueeeeercerrunnnces .. 453

PLC_PRG file ¢ 454

Alarms function block e 455

Door function block 456

Oven function block ¢ 457
Testing the apPliCAtION ..cccccueeeiiiiiiiiiieeiiieiiiiieneetieecsissneetttecssssssseessssssssssessssssssssssssssses 459

Testing the door lock 459

Testing the gauge ¢ 461

Upgrades o 464

SUMMATY aeceeeennnceeennncceeennnceennes eeeeseseettetneetttttitettattsstetarssstettassesssanssssesarasesenane 464
FINal thOUGRLS «.uuuueeiiiiiieiiiiceeettcccteet ettt esses e s ssssse e s s sssessssssesessnes 464
FiXit up! eeeeeereciivenneeneeccnnnes S 465
Chapter 18: Unlock Your Exclusive Benefits 467
Answer Sheet 471
Other Books You May Enjoy 481
Index 485

Preface

Industry 4.0 is shaking up the automation industry. The days of only needing to know Ladder
Logic are coming to an end. As new technologies such as Al take the world by storm, automation
programmers are going to need to adapt their code to this ever-changing world. To survive in the

new landscape, programmers are going to have to master object-oriented programming.

For years automation programming has skirted around adopting modern software engineering
practices. Many industries and companies have been using the same technologies and practices

for decades. However, Industry 4.0 is shaking that philosophy to the core.

Quality software engineering is the backbone of modern program development. OOP and its
relatively new introduction to PLC programming have rocked the automation world. This book
will bridge the gap between the modern programming landscape and the controls world by
teaching applied object-oriented and software engineering practices. Along the way this book

will explore other concepts like
e Version Control
e UML design
e Emerging technologies
e Bestpractices

e HMI development

This book is designed to apply concepts that are usually reserved for traditional programming
to PLC programming in a vendor-neutral and language agnostic manner. The goal of this book
is to demystify techniques that are often ignored by the automation industry to build the future

of manufacturing.

Xxvi Preface

Who this book is for

This book is for automation programmers with a background in software engineering topics
such as object-oriented programming and general software engineering knowledge. Automation
engineers, software engineers, electrical engineers, PLC technicians, hobbyists, and upper-level
university students with an interest in automation will also find this book useful and interesting.

Anyone with a basic knowledge of PLCs can benefit from reading this book.

What this book covers

Chapter 1, Advanced Structured Text: Programming a PLC in Easy-to-Read English, details the basics
of advanced Structured Text such as error handling, state machines, and expert systems. The
basics of IEC 61131-3 are also introduced.

Chapter 2, Complex Variable Declaration: Using Variables to Their Fullest, revolves around complex

variables such as arrays, constants, and more. This chapter also introduces structs and their uses.

Chapter 3, Functions: Making Code Modular and Maintainable, shows you how to build modular

code. This chapter will introduce you to functions, arguments, return types, and more.

Chapter 4, Object-Oriented Programming: Reducing, Reusing, and Recycling Code, introduces the

foundations of object-oriented programming. Methods, objects, and function blocks are covered.

Chapter 5, OOP: The Power of Objects, takes a deep dive into the more advanced topics of ob-
ject-oriented programming. This chapter will also cover the four pillars of OOP, composition,

the inheritance chain, and more.

Chapter 6, Best Practices for Writing Incredible Code, introduces you to the best practices of software
engineering. Topics covered are technical debt and how to avoid it, naming conventions, and

much more.

Chapter 7, Libraries: Write Once, Use Anywhere, covers the basics of creating software libraries. This

chapter covers best practices, documentations, and more.

Chapter 8, Getting Started with Git, illustrates the art of using Git. This chapter includes basic Git

commands, how to interface with GitLab, branching, and other practices.

Chapter 9, SDLC: Navigating the SDLC to Create Great Code, provides an overview of the software

development lifecycle including popular implementation methodologies.

Preface xxvii

Chapter 10, Architecting Code with UML, explains how to use UML to design object-oriented

programs.

Chapter 11, Testing and Troubleshooting, details the art of debugging and testing. This chapter will

cover testing and debugging techniques including how to use modern Al to troubleshoot issues.

Chapter 12, Advanced Coding: Using SOLID to Make Solid Code, explores the principles of SOLID

programming and how they can be leveraged in automation.

Chapter 13, Industrial Controls: User Inputs and Outputs, explore how to create HMIs. This introduc-

tory chapter explores basic controls, design techniques, and more.

Chapter 14, Layouts: Making HMIs User-Friendly, explores how to get the most of an HMI by mak-

ing it as user friendly as possible. You will explore multi-screen layouts, navigation, and more.

Chapter 15, Alarms: Avoiding Catastrophic Issues with Alarms, provides a deep dive into alarms
and their usage. This chapter covers colors, alarm acknowledgement, banner setup, and much,

much more.

Chapter 16, DCSs, PLCs, and the Future, contains an exploratory look at basic networking technol-
ogies, distributed control systems, and the future of Industry 4.0.

Chapter 17, Putting It All Together: The Final Project, is a real world simulation for a broken project.
You will apply the skills you learned to build and repair the codebase.

To get the most out of this book
To get the most of this book, you will need to have the knowledge of Structured Text or text-based

programming.

Answers to all questions at the end of each chapter can be found in the Answer Sheet provided
at the end of the book.

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/

Mastering-PLC-Programming-Second-Edition. We also have other code bundles from our rich

catalog of books and videos available athttps://github.com/PacktPublishing. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this book.

You can download it here: https://packt.link/gbp/9781836642558.

https://github.com/PacktPublishing/Mastering-PLC-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-PLC-Programming-Second-Edition
https://github.com/PacktPublishing
 https://packt.link/gbp/9781836642558

xxviii Preface

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. For example: “The VAR_

INPUT section is used for variables that will be used for what are called arguments or parameters.”

Ablock of code is set as follows:

x = input
If x > 100 Then

Fan = on
Elseif x < 90 then
Fan = off

Any command-line input or output is written as follows:

git clone <url>

Bold: Indicates a new term, an important word, or words that you see on the screen. For instance,
words in menus or dialog boxes appear in the text like this. For example: “Now, create a blank

project, fill out the project name, and click Create.”

\/:t’(Warnings or important notes appear like this.

N

',@\' Tips and tricks appear like this.

7/

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book or have any general feed-
back, please email us at customercare@packt.com and mention the book’s title in the subject

of your message.

Preface XXix

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you have found a mistake in this book, we would be grateful if you reported this to us.

Please visit http://www.packt.com/submit-errata, click Submit Errata, and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us

at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you

are interested in either writing or contributing to a book, please visit http: //authors.packt.com/.

Share your thoughts

Once you've read Mastering PLC Programming, Second Edition, we’d love to hear your thoughts! Scan

the QR code below to go straight to the Amazon review page for this book and share your feedback.

https://packt.link/r/1836642555

Your review is important to us and the tech community and will help us make sure we’re

delivering excellent quality content.

http://www.packt.com/submit-errata
http://authors.packt.com/
https://packt.link/r/1836642555

XXX Preface

Free Benefits with Your Book

This book comes with free benefits to support your learning. Activate them now for instant access
(see the “How to Unlock” section for instructions).

Here’s a quick overview of what you can instantly unlock with your purchase:

PDF and ePub Copies Next-Gen Web-Based Reader

< D Mo

T
EPUB 0 !@

Free PDF and ePub

versions Next-Gen Reader

Access a DRM-free PDF copy of this book (fu} Multi-device progress sync: Pick up

to read anywhere, on any device. where you left off, on any device.

It.?;.. Use a DRM-free ePub version with your Highlighting and notetaking: Capture
favorite e-reader. ideas and turn reading into lasting

knowledge.

N Bookmarking: Save and revisit key

sections whenever you need them.

.:"3:- Dark mode: Reduce eye strain by

switching to dark or sepia themes.

Preface xxxi

How to Unlock

Scan the QR code (or go to packtpub.com/unlock). Search for this
book by name, confirm the edition, and then follow the steps on B I

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require one.

http://packtpub.com/unlock

Part 1

Advanced Structured Text

In this section, you’ll build a strong foundation in advanced Structured Text (ST) programming and
modern PLC software design. You’ll move beyond the basics to explore the tools and techniques
that allow you to write clean, modular, and maintainable industrial automation code. You’ll learn
how to structure complex logic, design robust architectures using functions and object-oriented
programming, and apply professional best practices used by experienced PLC engineers. By the
end of this part, you'll be equipped with the knowledge needed to craft scalable solutions, reduce

technical debt, and develop reusable software components that can be applied across projects.
This part of the book includes the following chapters:

e Chapter 1, Advanced Structured Text: Programming a PLC in Easy-to-Read English
e Chapter 2, Complex Variable Declaration: Using Variables to Their Fullest

e Chapter 3, Functions: Making Code Modular and Maintainable

e Chapter 4, Object-Oriented Programming: Reducing, Reusing, and Recycling Code
e Chapter 5, OOP: The Power of Objects

e Chapter 6, Best Practices for Writing Incredible Code

e Chapter 7, Libraries: Write Once, Use Anywhere

Advanced Structured Text:
Programming a PLC in
Easy-to-Read English

Software engineering is a pivotal, yet often overlooked, aspect of programmable logic controller
(PLC) programming. PLC software development often takes a backseat to hardware development.
Unfortunately, many in the modern automation landscape see PLC software as a disposable
component. Contrary to this belief, the software that controls the PLC is the true heart and soul
of the system. The cold reality is that, without properly written software, fancy hardware is little

more than very expensive paperweights.

Object-oriented programming (OOP) has dominated the IT landscape for decades. Most gen-
eral-purpose programming languages, such as Java, C++, C#, Python, and so on, support the
paradigm. Even some functional-first programming languages, such as Microsoft’s F#, support
OOP to some extent. Though often overlooked in the automation world, certain PLCs that follow
the IEC 61131-3 standard can utilize the paradigm to some extent. This book will be unique as it

will explore PLC programming from an OOP perspective.

This book is not a beginner’s book. It assumes a certain level of proficiency with programming
logic and PLC programming in general. If you are not comfortable with program flow, logic and
design, and the basics of Structured Text (ST), this book could be hard to follow. However, if you
have programmed PLCs in the past using the ST language or have a background with a text-based
programming language such as C++, Java, C#, Python, or some other text-based, OOP language,

you should be able to use this book.

4 Advanced Structured Text: Programming a PLC in Easy-to-Read English

Almost all modern programming languages are text-based. Most PLC programming systems are no
different. Many programming systems will allow you to choose between multiple programming
languages. The word language is used loosely, as some of these so-called languages are actually
graphic programming interfaces that allow users to use symbols and other graphical depictions
to write programs. An example of this is Ladder Logic (LL). Though each of these interfaces has

its time and applications, this book is going to predominantly focus on ST.

Though LL rules the PLC world due to its visual representation of circuits, which makes it more
intuitive for programmers with a background in electronics, ST can greatly reduce the overall
complexity of a program. Unfortunately, many PLC programmers only have a sparse understand-
ing of ST. Though ST is not necessarily a prerequisite to understanding OOP, it will greatly help.
Therefore, before we do a deep dive into OOP, we need to first explore some of the more advanced

programming capabilities that ST has to offer. For this, we’re going to:

e Explore the IEC 61131-3 standard

e Explore the needed software and learning approach
e Learn about error handling

e Explore state machines

e Explore expert systems

Free Benefits with Your Book

Your purchase includes a free PDF copy of this book along with other exclusive benefits. Check
the Free Benefits with Your Book section in the Preface to unlock them instantly and maximize your

learning experience.

Technical requirements

To get the most out of this chapter, a Windows computer and a working copy of an IEC 61131-3-com-
pliant programming environment that supports OOP will be needed. For this book, the recom-

mended programming system is CODESYS: https://us.store.codesys.com/.

This chapter will have multiple code examples. The code examples can be downloaded from GitHub
by following the link: https://github.com/PacktPublishing/Mastering-PLC-Programming-

Second-Edition.

https://us.store.codesys.com/
https://github.com/PacktPublishing/Mastering-PLC-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-PLC-Programming-Second-Edition

Chapter 1 5

The projects will utilize CODESYS and the book will assume you’re using that system. If you opt
to use a different programming system, you will need to copy and paste the examples into the
system of your choice. For the most part, an IEC 61131-3-compliant system should require minimal
to no modifications to the source code; however, this will depend on which feature the system
has adopted and how the vendor chose to implement the features. Regardless, the principles
and techniques explored in this book can be applied to any programming system that you use,

including general-purpose programming languages such as C# or Java.

Note

\/V Aswith all software, CODESYS will be updated from time to time. So, if you download
the code and it gives a compatibility issue, the easiest workaround will be to simply

create a new project in the updated version and copy the code there.

Exploring the IEC 61131-3 standard

Most advanced PLCs are IEC 61131-3-compliant to some degree, especially if they are PC-based,
such as Beckhoff PLCs. IEC 61131-3 is a standard that essentially governs the programming envi-
ronments that the PLC supports and the general functionality for the programming system. This
means aspects such as syntax, semantics, typing, memory management, error handling, mod-
ularity, code organization, and so on should be mostly consistent between PLCs. The standard

also governs the following programming languages:

e ST
e LL
e Sequential Function Chart (SFC), often called Sequential Flow Charts in slang

e Function Block Diagram (FBD)

The IEC 61131-3 standard is just that, a standard. IEC 61131-3 is not a programming language, PLC
brand, or anything of the sort. The standard promotes uniformity across programming systems

and ultimately promotes vendor neutrality.

Though the standard is vendor-neutral, you typically cannot take a project written for one brand,
and sometimes one model, and use the code as is with another brand or model. Different PLC
brands will often use different system architectures, such as processors, and have their own locks
that prevent a project written for Brand A from being compiled and run on Brand B. Though the
syntax will generally be the same, it is not unusual for different brands to put their own touches

on the standard.

6 Advanced Structured Text: Programming a PLC in Easy-to-Read English

If you attempt to port a codebase, you will have to recompile the source code for the new brand.
In other words, if you attempt to run a program meant for one PLC brand on another, you will, at
aminimum, have to copy the code to the proper programming environment and tweak the code
as necessary. This is because it’s not unusual for manufacturers to implement their own custom
function blocks, functions, features, and even tweak the programming syntax. Itis also the norm

for manufacturers to choose not to implement certain features that the standard governs.

Note

\E/ A new technology called PLCOpen XML has recently been introduced to help in-

teroperability between compliant systems.

This may seem all doom and gloom as the standard is supposed to support vendor agnosticism,
and from what was just explored, we can’t necessarily port code, at least not easily. This couldn’t
be farther from the truth. The standard provides us with a general set of rules to follow. Meaning if
there are differences between the different environments, they are typically minor and will mostly

consist of custom function blocks and functions, which we’re going to explore in later chapters.

This is where many programmers often fall off the wagon. Most programmers look at program-
ming through a very language-specific lens, especially automation programmers. However, this
is a very poor philosophy as the principles and techniques that govern programming are lan-
guage-agnostic, meaning that they apply to most languages. This means that regardless of what
you’re doing, if you focus on the principles presented in this book, you can apply them to any

programming system and create hyper-advanced codebases.

IEC 61131-3 and OOP

One capability that is governed by the standard, at least in terms of automation, is a concept
called OOP. OOP is not a programming language, nor is it something akin to a function or func-
tion block; itis known as a programming paradigm. This means that it’s a way to conceptualize
and ultimately architect code. OOP is not unique to automation programming, nor is it by any
means exotic to the programming industry. It is a widely adopted programming paradigm that
has been used in almost every traditional programming language and in a vast majority of soft-

ware applications since its inception in the 1980s.

Chapter 1 7

In 2013, the automation industry followed suit when the third edition of IEC 61131-3 introduced
object-oriented programming to PLCs, allowing programmers to apply modern software en-
gineering techniques to their control code. IEC 61131-3 standardizes OOP and the components
that are generally associated with the paradigm for compliant PLCs. By understanding what
these components do and how they behave, you can apply time-tested OOP practices to greatly

enhance your codebase.

Not every programming system will support OOP. OOP is still considered novel to the automation
world, and many automation programmers still view it with a level of skepticism, misunder-
standing, and fear. It must be understood that even though OOP is still novel to automation, it s,
as stated before, a 40+ year-old, time-tested paradigm. Though many automation programmers
typically do not like to venture outside of what they’re familiar with, it is highly recommended
to try using OOP with a compliant device at least once. To follow along with this book, we need
software that supports the paradigm. In the next section, we’re going to explore what software

we need to start writing advanced code!

Needed software and learning approach

The biggest hurdle to being a programming instructor is getting students to understand that
the key to being a good engineer is not memorizing patterns or programming commands. To be
successful as a developer, whether it be a developer for traditional apps or PLCs, lies in the ability
to take established programming principles and apply them to any system. The key to mastering
the material presented in this bookis to approach it from a software engineering perspective. As
you go through this book you will be tempted to think the material presented is only for CODESYS
or even PLCs in general. However, this is a misnomer as the techniques explored in this book can

be used with any OOP based language or system.

Programming software

To follow along with this book, an IEC 61131-3 programming environment that supports OOP
will be required. The CODESYS environment will support most, if not all, of the IEC 61131-3 fea-
tures and is free to download and use. Under no circumstances should this book be considered
a CODESYS book! This means that you can essentially use whatever you want to follow along
with, as long as it supports OOP. Nonetheless, this book will assume you are using the CODESYS
software, which can be downloaded for free on the CODESYS website. Installing the software is
a straightforward process. All you need to do is download the software and follow the wizard.
Many other systems, such as TwinCAT, are just as easy. Once you get a software system installed,

you should be able to follow along.

8 Advanced Structured Text: Programming a PLC in Easy-to-Read English

Once you get a system stood up it is important to understand that no matter how good a pro-
grammer you are, your program will always face potential issues that could interrupt its execu-
tion. This could be something as simple as the denominator of a number being rounded to zero
before division or as complex as the mismanagement of memory. Either way, your program must
gracefully be able to handle the error without crashing. In the following section, we’re going to

explore how to gracefully handle otherwise fatal errors!

Error handling

Errors can kill the execution of a program, which, in turn, can lead to injury or death in extreme
cases. Exceptions occur when the PLC encounters a problem that it cannot handle at runtime.
When one such error occurs, the PLC program will lock up or crash, and the PLC will typically
need to be rebooted. On top of all that, if the condition that caused the error occurs again, the
program will again crash and cause another lock up. In essence, the only safe way to handle the

condition is to modify the code to ensure that the erroneous condition is handled gracefully.

Exception errors will not show up during the compilation process. Instead, exceptions occur when
the program is running. Due to their nature, it is often difficult or impossible to fully predict when
an exception will occur. To make matters worse, some exceptions can take very specific conditions
to trigger, and, as a result, there might be long intervals between occurrences. To compound the
issue, certain exceptions may not show up during development. Therefore, due diligence must
be given to possible errors when developing the software. In other words, as a developer, you

need to expect the unexpected!

Many different things can cause an exception and crash a program. A common exception that
can often occur is a division by zero error. This error occurs when a divisor is accidentally set to @
or gets extremely close to a decimal point, which will cause the PLC to round it to 8. A common
reason for this type of error is a malfunctioning sensor. Other common errors that can throw
an exception are null pointers or an array out of index error. Depending on what you’re working
on, there could be others as well. Generally, it is good to use some form of error handling when

working with any of the following:
e Division
e Pointers

e Arrays

To explore what an error looks like, let’s create a simple program that will attempt to divide a

number by 0.

Chapter 1 9

For this program, the required variables are as follows:

PROGRAM PLC_PRG

VAR
dividend : INT;
divisor : INT;
division : INT;
END_VAR

For this example, we are going to have a dividend and divisor variable, and the quotient of the

two is going to be assigned to division.

The logic for the program that will go in the main section of the PLC_PRG POU file is as follows:

dividend := 5;
divisor := 0;
division := dividend / divisor;

The code in the file will attempt a division by zero calculation. Since division by zero is an illegal
operation in any form of computer programming, the PLC program will crash, and an error such

as the one in Figure 1.1 will be produced.

Expression Type Value

@ dividend INT 5

@ divisor INT 0

@ division INT 0
1|+ dividend[5 | := 5:
2 divisor[0 | := 0:
3le Hivision[0 | := dividend[5 |/ divisof © |
4 RETURM

Figure 1.1: Division by 0 error

After you run the program, you should notice two things. The first is that the line that does the
computation is now highlighted. The highlight means there is an error present on that line of code.
The second thing you should notice is that the program automatically stops. If you watch the Play

button, it will automatically reenable.

10 Advanced Structured Text: Programming a PLC in Easy-to-Read English

If you try to change the number to a value that is not zero and attempt to log back in with the

defaultlogin selection, Login with online change, you will either be met with the pop-up error

in Figure 1.2 or the program will fail to run.

[@; Download failed: PLC in exception. See Log Page in Device Dialog for details

| ok | Details...

Figure 1.2: Download failed popup

When an error such as a division by zero occurs, restarting the program can be problematic. The
easiest way to fix the issue is to simply fix the error. In this case, change the zero to any other
non-zero value, then restart. Any code change will trigger the options in Figure 1.3. To restart the
virtual hardware, you must press the Login button again. This time, instead of selecting Login

with online change, you must select the Login with download option and ensure that Update

boot application is selected as well.

@ The application changed since last download. What do you wantto do?
Options
() Login with online change
© Login with download
() Login without any change

B Updateboot application

[oK } Cancel Details...

Figure 1.3: Necessary selections to reset the PLC

Once OK s clicked, the application should be reset, and you will be able to rerun your PLC program.
As can be deduced, in a fast-paced production environment, having to perform these steps every

time a value is set to @ can easily become a major issue.

Chapter 1 1

There are a couple of ways to handle division by zero errors. One way is to use a TRY-CATCH block,
which we will explore later, or a simple IF statement. To get our feet wet with error handling,
we’re going to start exploring how simple conditional statements can be used to handle issues

such as division by zero. To explore this concept, implement the following code:

dividend := 5;
divisor := 0;
IF divisor <> © THEN
division := dividend / divisor;
END_IF

This code performs a simple check on the value stored in the divisor variable. If the value of the
divisor variableis not, the program will perform the computation; however, if the value of the
divisoris @, it will not perform the operation. This code is an applicable solution when there are
only a few values that need to be checked, or you're working with a system that does not have

more advanced error-handling capabilities.

Problems like these are very easy to gloss over during development. To make matters worse, when
your program must perform alot of calculations, it can be easy to miss a check. Amore applicable

solution is to use what’s called a TRY-CATCH block.

Understanding the TRY-CATCH block

A better and more formal solution is to use a TRY-CATCH block. TRY-CATCH blocks are like safety
nets. When code is in a TRY block, it is essentially tested for errors. If an error is found, the code
in the CATCH block will be executed. A TRY-CATCH block is a much more eloquent solution as it
can be used to detect more faults without a dedicated IF statement. The pattern for a TRY-CATCH

block is as follows:

__TRY

<code to test>
__CATCH

<code to run when there is an error>
__ENDTRY

12 Advanced Structured Text: Programming a PLC in Easy-to-Read English

Three statements are required to implement a TRY-CATCH block. As can be seen, the three blocks
are a TRY, CATCH, and ENDTRY statement. The TRY section will test the code, and the CATCH block will
run if there is an error. To end the TRY-CATCH block, the ENDTRY keyword is used. To demonstrate
the TRY-CATCH block, let’s look at an example:

PROGRAM PLC_PRG

VAR
dividend : INT := 5;
divisor : INT := 0;
division : INT;
error : WSTRING;
END_VAR

For this demonstration, we’re going to preset dividend and divisor in the variable section. We're
also going to include an error variable that will hold a message to help us track our location in

the program. The following is the TRY-CATCH code that we’re going to use in the PLC_PRG POU file:

error := "";
__TRY

division := dividend / divisor;
_ CATCH

division := -999;

error := "Error Caught";
__ENDTRY

The computation in the TRY block will throw a division by zero error. When the error is thrown,
the code in the CATCH block will run. When the program is run, the division variable will be set

to -999, and our error variable will be set to Error Caught, as in Figure 1.4:

Device Application.PLC_PRG

Expression Type Value
& dividend INT 5
@ divisor INT a
@ division INT 999
& error WSTRING "Error Caught”

Figure 1.4: The TRY-CATCH program output

Chapter 1 13

If the divisor number is set to a value that will not cause a division by zero error, the code will

not need to be reset, and the computation will execute without issues, as in Figure 1.5.

Device Application.PLC_PRG

Expression Type Value
@ dividend INT 5
@ divisor INT 1
& division INT 3
@ errar WSTRING -

Figure 1.5: TRY-CATCH with no exception

The computation was executed without any issues. The overall takeaway is that even if an ex-
ception occurs, the program will not crash. Therefore, when valid values are passed back in, the

program will execute normally without needing to restart the PLC.

The true power behind a TRY-CATCH block is that it can handle multiple errors. In other words, if
you were trying to compute 20 different equations with a divisor that could possibly be set to o,
you wouldn’t have to use 20 IF statements to check whether any of the divisors are set to that
value. In all, you can test as much code as you need in a single TRY-CATCH block. The only real
drawback to this technique is that not every PLC programming system will support TRY-CATCH;

however, each PLC will usually have something that is similar in nature.

Note

\/V ATRY block can and usually will contain multiple lines of code. Once one of the lines
throws an error, the following lines of code will not be executed. Depending on what

the code is for, this could cause errors in the code further downstream.

FINALLY statements

There is one additional block that can be used with TRY-CATCH statements. This command is
known as a FINALLY statement. A FINALLY block is an optional block that is used in conjunction
with TRY-CATCH. The code in a FINALLY block will execute regardless of whether an exception
occurs or not. Essentially, the code that goes into a FINALLY block is used to do things that must

be executed regardless of whether there is an error or not.

14 Advanced Structured Text: Programming a PLC in Easy-to-Read English

The following code is the syntax for a TRY-CATCH-FINALLY block:

__TRY
<Code to test>
__CATCH
<Code to run when there is an error>
_ FINALLY
<Code that will run whether there is an exception or not>
__ENDTRY

As can be seen, adding a FINALLY block is as simple as adding the extra keyword.

Identifying and handling errors

The TRY-CATCH blocks that we have explored so far did not specify what the error was. In practice,
this usually isn’t a preferred behavior. The type of TRY-CATCH block that we have explored so far
can be called a generic except block. Itis important to remember that many different things can
throw an error. Therefore, if you want to address the issue, you will most likely need unique logic
to handle it. For real-world applications, you generally do not want to use generic except blocks.
In areal-world application, you want TRY-CATCH to have logic that can handle specific errors. For
example, if you find yourself with a division by zero error, you may want to switch the dividend to

1 or conduct some other logic that will alleviate the situation so that the error does not occur again.

The first step in creating specific logic is setting up an Exception variable.

Exception variables

This is how an Exception variable is declared:

PROGRAM PLC_PRG
VAR

exc : _ SYSTEM.ExceptionCode;
END_VAR

To demonstrate this, we’re going to explore a simple example. These are the necessary variables
for TRY-CATCH with Exception:

VAR
dividend : INT;
divisor : INT;

division : INT;

Chapter 1 15

exc : _ SYSTEM.ExceptionCode;
END_VAR

These are mostly the same variables that were used for the division by zero programs, except the

exc variable that will hold the exception.

This code will store the error in the exc variable and will be implemented in the PLC_PRG POU file:

__TRY
division := dividend / divisor;
__ CATCH(exc)
division := -999;
__ENDTRY

This code is nearly the same as the code we used for the original TRY-CATCH program. The only
difference between the programs is the (exc) code next to the CATCH statement. This variable

will store the exception in the exc variable, as can be seen in Figure 1.6:

Device Application.PLC_PRG

Expression Type Yalue
@ dividend INT 0
@ divisor INT 0
@ division INT -999
@ exc EXCEPT... RTSEXCPT_DIVIDEBYZERO

Figure 1.6: Error output

Figure 1.6 shows that the error the code picked up is RTSEXCPT_DIVIDEBYZERO. This means that

the code picked up a division by zero error.

Aswas stated before, itis usually considered a best practice and a good idea to implement custom
logic to handle the specific error. For our purposes, we’re going to set the division variable to

-999 only when a division by zero exception is thrown.

Handling custom exceptions
The following code is one way of implementing logic to respond to unique exceptions:
__TRY
division := dividend / divisor;
__CATCH(exc)
IF (exc = _ SYSTEM.ExceptionCode.RTSEXCPT DIVIDEBYZERO) THEN

16 Advanced Structured Text: Programming a PLC in Easy-to-Read English

division := -999;
END_IF
__ENDTRY

This code has an IF statement that checks for a division by zero exception. This code will only

change the division variable to -999 when a division by zero exception occurs.

Note

\/V This code serves two purposes. The first is that it protects the program’s execution
from all errors. The second benefit this code provides stems from specifically han-

dling division by zero.

In all, many types of exceptions can be thrown. There is no magic bullet to determine when and
where you should use a TRY-CATCH block. However, a good rule of thumb is to wrap things such

as arrays, math equations, and so on in TRY-CATCH blocks.

It is important to understand that if an error code is triggered, there is a problem. Just because
the program doesn’t crash does not mean that everything is okay. Error handling is just a means
of allowing your program to gracefully handle an error without crashing. If your program is
consistently triggering a TRY-CATCH block, the root cause of the error needs to be addressed. It is
also important to understand that if an error is caught, it doesn’t mean that everything is going
to work as intended downstream of the error. All we did here was set a default value, which may

or may not produce the correct results downstream.

Aswas mentioned before, pointers are often the cause of fatal PLC program errors. However, what
is a pointer? The following section will explore pointers and references so you can understand

how they work and how they can cause issues in a program.

Understanding pointers

To understand a pointer, it is first necessary to understand the basics of how variables are stored
in memory. For many PLC programmers, creating a variable or a tag is simply inputting a name
and assigning it a data type; however, some mechanics take place under the hood. For starters,
a variable is much more than just a name and a data type that holds a value. A variable is a ded-
icated memory block that the computer (in this case, the PLC) uses to hold a value of a specific
type. The memory block is generally not human-readable; as such, the variable name is just a
human-readable fagcade that makes accessing and manipulating the data in the memory block

easy while adding context to the value.

Chapter 1 17

Representing PLC memory

Figure 1.71s a graphical representation of a PLC’s memory. Itis a simplified way of conceptualizing

how the PLC sees its memory addresses and the values that reside in those blocks:

0x01 0x02 0x03 0x04 Address

Hello World 123 ¢ g Vel

Figure 1.7: A graphical representation of computer memory

As you have probably deduced, working with the raw addresses would be very confusing and
probably lead to bugs in the program. This is the reason why variable names are so important.

In short, a variable name adds a layer of abstraction over the memory address.

Variables are not the only type of data that has a memory address. As we will see later, function
blocks, methods, and more all have memory addresses when the program is running. A general

rule of thumb is that if it has a name that you provide, it has a memory address.

More times than not, you’ll want to work with a human-readable name over the memory block
address. However, you can still directly access the memory address of a variable or anything else
with whatis known as a pointer. Pointers are declared in a similar way to regular types; however,

the value they hold is the memory address of a variable, function block, or whatever else it might be.

General syntax for pointers

This is the syntax that is used to declare a pointer:

PROGRAM PLC_PRG
VAR

pt : POINTER TO <TYPE>;
END_VAR

This code is just declaring a variable with the POINTER and TO keywords. This variable declaration
will be able to hold the address of a function, variable, or so on of any type. In short, this is all

thatis needed to declare a pointer.

18 Advanced Structured Text: Programming a PLC in Easy-to-Read English

Although the working version of the code above will produce a pointer, it won’t do anything

meaningful. Essentially, we created a pointer that points to nothing. For a pointer to be of use,
we need to explore the ADR operator.

The ADR operator

The ADR operator will provide the address of whatever is passed into it. Many times, the ADR op-
erator is used with pointers. It is the main way to retrieve address information. So, it is usually

assumed that if you're going to use a pointer, you’re going to use the ADR operator as well.

To explore the ADR operator, we’re going to create a small program that will display the memory

address of a variable. The following are the variables we will need:

PROGRAM PLC_PRG

VAR
pt : POINTER TO INT,;
testVal : INT := 10;
END_VAR

The pt variable is the variable that holds the memory address. The testVal variable is the im-

portant variable for this program. This is the variable whose memory address we’re going to read

with the following code:

pt := ADR(testval);

The testVal variable is passed into the ADR operator, and that outputis assigned to the pt variable.

When the code is run, you should see an output similar to what is shown in Figure 1.8.

Device Application.PLC_PRG

Expression Type Value
H @ pt POIMTE... 16#000001E6044E3C1A
@ testval INT 10

Figure 1.8: Memory address output

The memory address that you get when you run this program will probably be different from the
one in the screenshot. Nonetheless, Figure 1.8 shows the memory address of testVal for this

execution cycle.

Getting the memory address alone won’t accomplish much. To do something meaningful, we
have to dereference the pointer.

Chapter 1 19

Dereferencing pointers

Obtaining a value out of a pointer is called dereferencing. This is accomplished by appending
the ~ symbol to the pointer variable. The ~ symbol gives you the ability to access or manipulate
the data in a pointer. To demonstrate dereferencing, create a new program and implement the

following variables:

PROGRAM PLC_PRG

VAR
testVal pt : POINTER TO INT;
testVval : INT := 10;
testVal2 : INT;

END_VAR

This code creates a pointer variable to hold the memory address of testVal. The testVal variable
isinitialized with a value of 10. The testVal2 variable is not initialized, and after the logicis run,

it will be assigned the value that lives inside of testVval.

To power the project, implement the following logic in the PLC_PRG POU file:

testval pt := ADR(testVval);
testVal2 := testVal_pt”;

When the program executes, the first line assigns the address of testVal to the testVal_pt vari-
able. The second line accesses the data in testVal_pt and assigns it to the testVal2 variable.

After the program runs, the value of testVal2 should be 10, similar to what is shown in Figure 1.9:

Device Application.PLC_PRG
Expression Type Value
g testVal_pt POIMTE... 16#%000001E6044ESC1A
@ testval INT 10
@ testval2 INT 10

Figure 1.9: Dereferencing output

When a pointer is not properly configured, it can become an invalid pointer. An invalid pointer
is kind of like a null pointer in a traditional language. Though they occur less frequently in PLC

programming, you need to know how to handle them.

20 Advanced Structured Text: Programming a PLC in Easy-to-Read English

Handling invalid pointers

If you've ever programmed in C/C++, Java, C#, or any traditional programming language, chances
are you’ve run across a null pointer before. PLC programming is no different. If you’re working
with a pointer, you want to check that the pointer is pointing to something. For example, you
may try to assign a value to a pointer variable, but if the variable isn’t pointing to anything, you

have the PLC equivalent of a null pointer. Consider the following code, which declares a pointer:

PROGRAM PLC_PRG
VAR

testval_pt : POINTER TO INT;
END_VAR

These are the variables we are going to use in the invalid pointer program. As can be seen, all we

have is our standard pointer variable, testval_pt.

The following is the logic that will be used to demonstrate the invalid pointer:

testVal pt™ := 2;

Asyou can tell from the code, testVal doesn’t point to anything. As it stands, the code is attempt-
ing to assign the number to an invalid pointer, as the pointer isn’t pointing to a memory address.

When the code is run, the output should match what is shown in the following figure:

L|r:> testVal_pt [72]| := 2;
Figure 1.10: Invalid pointer

The program will instantly fail when someone tries to run it. Essentially, this code is trying to
assign the value of 2 to an empty pointer. Since the pointer does not point to a memory address,

the PLC will not know how to handle the situation, and the program will crash.

Catching an invalid pointer

Depending on what you're trying to accomplish with your code, an easy way to check for an invalid
pointer is to check the memory address. If the pointer is not pointing to anything, then the value

will be 0. An easy way to check whether a pointer is valid is to perform a simple IF check on it.

Chapter 1 21

IF statements for invalid pointers
This logic will only try to assign a value to a pointer if the pointer address is not e:

IF testval pt <> © THEN
testVal_pt® := 2;
END_IF

If the memory address is @, then the program will ignore the assignment and not crash.

Compared to the other logic, this code did not crash. The IF statement prevented the assignment

that caused the previous code to crash by not allowing the erroneous line of code to be executed.

Using an IF statement to check for an invalid pointer is an excellent and very common way to de-
tectinvalid pointers. Many developers will always wrap their pointer code in a control statement

as a best practice. However, as mentioned before, you can also use a TRY-CATCH block.

TRY-CATCH for invalid pointer variables

These are the necessary variables to demonstrate the TRY-CATCH invalid pointer program:

PROGRAM PLC_PRG

VAR
pInvalid : POINTER TO INT;
exc : _ SYSTEM.ExceptionCode;
catch_value : WSTRING;

END_VAR

The following is the logic to catch the error:

__TRY
pInvalid® := 10;
__CATCH(exc)
catch_value := "Caught error";
__ENDTRY

22 Advanced Structured Text: Programming a PLC in Easy-to-Read English

As can be seen, this is just a basic TRY-CATCH block. When this code is executed, you should see

an output similar to the following figure:

Device Application.PLC_PRG

Expressicn Type Value

+ @ plnvalid POINTE.., 16%0000000000000000
@ exc EXCEFT..., RTSEXCPT_ACCESS_WIOLATIOM
@ catch_value WSTRING "Caught error”™

Figure 1.11: TRY-CATCH invalid pointer output

The output in Figure 1.11 is a little more descriptive than just wrapping the pointer in an IF state-
ment; however, the drawback to this method is that to remedy the underlying problem, you will
still need custom IF statements to handle the logic. On the other hand, the TRY-CATCH blocks will
provide a blanket of protection for multiple pointers. Essentially, both code blocks will prevent
the program from crashing. It will ultimately be up to you as the developer to choose which

method is more appropriate.

Pointers are fine to use, and there are many codebases that still use them. However, modern PLC
programming has introduced a more user-friendly way of working with pointers that requires
less syntax. For new codebases, it is usually a good idea to favor what is known as a reference

over pointers.

Discovering references

Areferenceis a type of pointer thatis more user-friendly and requires less syntax than a traditional
pointer. A few major advantages of using a reference are that you do not have to use the » symbol,

you do not have to use the ADR operator, and references are type safe.

References share many similarities with pointers, including similar syntax. Like pointers, a refer-
ence mustbe declared. Therefore, the first step in learning how to use references is to understand

how to declare them.

Declaring a reference variable

Declaring areference is almost the same syntax as declaring a pointer. Essentially, references can
be thought of as a shorthand way of using a pointer. The major difference is that the REFERENCE
keyword is used as opposed to the POINTER keyword.

Chapter 1 23

The syntax to declare a REFERENCE variable is as follows:

<variable> : REFERENCE TO <data type>

Putting this syntax into practice, we can create a reference to an integer, as in the following code.

These are the variables we will use for the reference demonstration:

PROGRAM PLC_PRG

VAR
A : REFERENCE TO INT;
B : INT;

END_VAR

This example will only use two variables. The A variable will be the REFERENCE variable that will

be assigned the value thatis in B when the program is run.

Example program
This is the code to demonstrate references:

A REF= B;
A := 33;

With this code, the two variables are essentially linked. In a more fundamental sense, A is now

an alias for B.

Run the program as is and observe your output. Then, comment out the second line and rerun it
with the third uncommented. After following this procedure, you should see an output similar

to what is in the following figure:

DeviceApplication.PLC_PRG Device Application.PLC_PRG
Expression Type Value Expression Type Value
@ A REFERE... 33 [REFERE... 1111
@ B INT 33 @ B INT 1111
1 L 33 | REF= B[=22 |; 1|% A 1im_| REF= B[1in_;
2 A 33 | := 33; //Comment this 2z //A := 33; //Comment this 1
3 //B = 1111; //uncomment this 3 Bl 1111 | := 1111; //uncommen

Figure 1.12: Reference program output

24 Advanced Structured Text: Programming a PLC in Easy-to-Read English

Essentially, the reference program does the same as the pointer program; however, the reference
program uses a much simpler and more intuitive syntax. The first line is of vital importance. Since
this line is equivalent to the ADR operator in the pointer program, if this line is neglected, you will

get an invalid reference.

Checking for invalid references

It is important to check for invalid references in the same way we do for invalid pointers. There
is an easy operator that can be used to test whether a reference is valid or not. The most effective
way to do thisis to use the _ ISVALIDREF operator. This operator will return TRUE if the reference
is valid, or FALSE if it is not.

These are the bare minimum variables to test for an invalid REFERENCE variable:

PROGRAM PLC_PRG

VAR
A : REFERENCE TO INT;
B . INT := 3;
valid : BOOL;

END_VAR

The valid variableisn’t always necessary, as the operator returns a TRUE or FALSE value, so it can
often be embedded in a control statement. However, for this example, we are going to store the

return in the valid variable. This is the logic we will use to check whether the reference is valid:

A REF= B;
valid := _ ISVALIDREF(A);

All we are doing is passing the A reference variable into the operator and assigning the output of

the operator to the valid variable. When the program is run, you should see the following output:

Device.Application.PLC_PRG

Expression Type Value
@ A REFEREMCE TO INT 3
@ B INT 3

wvalid BOOL

Figure 1.13: The __ISVALIDREF output

Since we have a valid reference, the operator’s output is TRUE. If you were to comment out the

first line of code and rerun the program, the valid variable will be set to FALSE.

Chapter 1 25

Generally, whether to use a reference or a pointer will boil down to the developer’s preference.

Another relatively simple yet confusing concept that many automation programmers do not have
a good grasp of is the concept of state machines. So, in the next section, we’re going to explore

the concept and how to use one.

State machines

State machines sound like a complex and scary concept. Depending on the context of the state
machine, they can be complex; however, fundamentally, they aren’t. Fundamentally, a state
machine can be defined as a structure where some type of input and a current state dictate some

type of output state.

There are many types of state machines. In terms of automation, the most common is what’s
known as a finite state machine (FSM). Essentially, an FSM is a state machine with a finite number

of states. In a very basic sense, there are a few key components to an FSM:

e Finite number of states: A state can be thought of as a mode. In terms of automation, a
mode can be something like a machine being in an on, off, or standby mode.

e Transitions: A transition can be thought of as the change from one state to another. For
example, a machine going from on to off can be thought of as a transition.

e Input: Aninput can be some type of action or event that triggers a transition. This could
be areading from a sensor or some type of information that a user will input.

e Output: An output can be thought of as what happens as a result of the current state or
atransition between states. This could be something like a machine turning on after you

flip a switch.

The simplest way to conceptualize a state machine is with a lightbulb. Consider Figure 1.14:

/.
/

OFF ON

Figure 1.14: State machine (lightbulb on)

26 Advanced Structured Text: Programming a PLC in Easy-to-Read English

In this example, we have a lightbulb attached to a switch. When the switch is in the on position,
the lightbulb will be turned on. When the switch is in the off position, the light will be off, as in
Figure 1.15.

Figure 1.15: State machine (lightbulb off)

For this example, the switch can be thought of as the input. When the input is changed, whether
it is switched on or off, the light will transition to mirror that state. When the light is finished

transitioning, its output will be either on or off.

State machine code

Visually seeing a state machine can only go so far. So, in this section, we’re going to explore the
basics of writing a simple state machine. To start, we’re going to look at the basic mechanics of

creating a state machine.

State machine mechanics

In terms of coding, there are a couple of ways we can easily implement an FSM. The first is with
an IF-ELSIF statement block, and the other is with a CASE statement. If we need to create a state
machine for a piece of equipment that will put the machine into either an on, off, or standby

mode, we could use a program like the following:

e IF-ELSIF: This code example uses a simple IF-ELSIF-ELSE block to implement a state

machine:

Input state
IF state = 1 then
Turn machine on
state = 2
ELSIF state = 2 then
Put machine into standby mode
state = 3

Chapter 1 27

ELSIF state = 3 then
Turn machine off

IF user flips switch

state = 1
ELSE
Input not valid
state = 3

e CASE: For this example, a simple CASE statement is used to implement a state machine:

Input state

CASE 1:
Turn machine on
state = 2
CASE 2:
Put machine into standby mode
state = 3
CASE 3:

Turn machine off
IF user flips switch
state = 1

Default:
Input not valid
state = 3

Whether you opt for the IF-ELSIF-ELSE or the CASE example will mostly depend on your coding
style and the project. Both will do the same job; however, the CASE commands will typically
streamline the code and arguably make it easier to follow. Regardless, both iterations will often
be used. To round out this chapter, we’re going to create a working state machine. However, for
now, we’re going to move on and create something that will in many respects resemble a state

machine. This concept that we will explore is known as an expert system.

Expert systems

In the early days of artificial intelligence (AI), when computer and data science weren’t nearly
as fleshed out, there was an Al technique called expert systems or expert machines. Essentially,

these systems were a series of IF-THEN statements that, when executed correctly, could provide

28 Advanced Structured Text: Programming a PLC in Easy-to-Read English

alevel of expertise in a given system. Nowadays, these systems aren’t used as much in the tradi-
tional programming landscape due to the advances of actual Al systems, such as deep learning

and the like. Nonetheless, expert systems can still have a great effect in the automation industry.

An expert system is a program or functionality of a program that is used to simulate human-like
judgment and decision-making. Essentially, you can think of these systems as simulated experts
for a domain. For example, suppose you have a cutting machine; you can use an expert system to

automatically adjust the saw blade in relation to the consistency of the material.

Though traditional Al rules the modern world, expert systems are relatively easy to implement and
lightweight compared to many modern Al systems. Though these systems can easily incorporate
various technologies, you can get away with simply using control statements to implement basic
expert systems. In terms of automation, expert systems are used in many different automation

projects. One notable application for an expert system is fault diagnosis.
Before we can demonstrate the expert system, we first need to understand what rules and facts are:

e Facts: Things the system currently knows or believes to be true

e Rules: The IF-THEN logic that uses facts to infer new facts or actions

An example of rules and facts would be the following pseudocode:

If car does not start then
Check lights
If lights are dim then
Check battery
If battery is less than 12 volts
Change battery

In this case, the car not starting, the lights being dim, and the battery being less than 12 volts
are examples of facts. The logic they are embedded in (thatis, the If statements) represents the

rules that govern the system’s behavior.

Knowledge base

An expert system is built around what is called a knowledge base. In a very brief sense, a knowl-
edgebaseis a set of facts and rules that serve as the system’s brain. The more complex the knowl-
edge base is, the more knowledgeable the system will be. To see an expert system in action, let’s

explore an example.

Chapter 1 29

Expert system example
To begin, let’s create an expert machine that can troubleshoot an error with an industrial

saw machine.

To implement this program, we can use the following variables:

VAR
cutsNotStraight : BOOL;
sawBladeHours : INT;
changeBlade : BOOL;
END_VAR

In this case, these variables will simulate a system that checks whether cuts are straight and the
number of hours on a saw blade. If the hours on the blade are greater than 20, the system will

direct the user to change the saw blade. To do this, the following logic can be implemented:

IF cutsNotStraight = TRUE THEN
IF sawBladeHours > 20 THEN
changeBlade := TRUE;

ELSE
changeBlade := FALSE;
END_IF
ELSE
changeBlade := FALSE;
END_IF;

Much like with the pseudocode, the system will do a series of IF checks to evaluate the rules. Once

you implement the code, set the cutsNotStraight variable to TRUE and sawBladeHours to 50.

Device Application.PLC_PRG

Expression Type Value
cutsNotStraight BOOL
$ sawBladeHours INT 50
changeBlade BOOL TRUE

Figure 1.16: Expert system output

30 Advanced Structured Text: Programming a PLC in Easy-to-Read English

As can be seen, based on the current facts, the expert system suggests changing the blade out by
setting the changeBlade variable to TRUE. Now, either change the cutsNotStraight variable to
FALSE or the sawBladeHours variable to something less than 20. When you do that, you should
be met with the result in Figure 1.17.

Expression Type Value
$ cutsNotStraight BOOL
@ sawBladeHours INT 10
changeBlade BOOL

Figure 1.17: Expert system second output

In this case, the changeBlade variable is set to FALSE, as one would expect. In other words, we

now have a simple expert system that can determine whether a saw needs to be changed!

Now that we have a solid understanding of expert systems, we can move on to our final project!

Final project: Making a simple state machine

For our final project, we’re going to make a simple FSM that will control the state of a machine
thatis used to produce a certain number of parts. The machine will have multiple states, such as

an on, off, and error state. To begin, let’s design our state machine!

State machine design

To begin, let’s jot out some pseudocode to get a basic feel for the general skeleton of the system:

Case state

1:
Machine off
28
Production run (on)
If error detected
state = 3
B

Error state
state = 1

As we can see, all we have are three states: on, off, and error. If an error is detected during a
production run, the machine will transition to an error state. With the general logic in place,

let’s implement the code.

Chapter 1 31

Variables for the state machine
These are the variables that will be used for the state machine:

PROGRAM PLC_PRG

VAR

machineState : INT := 1;

motorSpeedCutOff : INT := 10000;

runTime : INT := 2;

setSpeed : REAL;

numOfParts : REAL := 8;

motorOff : BOOL;

exc : __SYSTEM.ExceptionCode;
END_VAR

This program will have a number of preset values. ThemachineState variable is preset to 1, which
means that the machine will automatically start in the off state. The setSpeed variable is the
quotient of numOfParts divided by the runTime value. The setSpeed variable is a simulated motor
speed value that will set the speed of a theoretical motor. These values simulate the number of
parts that a line should produce in a given amount of time. If the operator accidentally inputs a

o value for runTime, the line will transition to an error state, which will reset everything.

Now that the variables for the state machine have been established, we can explore the logic that
drives the state machine. As can be seen in the following section, the general structure for our

state machine is very simple.

Exploring state machine logic

This is the logic for the state machine:

CASE machineState OF
1:

motorOff := TRUE;

__TRY

setSpeed := numOfParts / runTime;

IF setSpeed >= motorSpeedCutOff THEN

32 Advanced Structured Text: Programming a PLC in Easy-to-Read English

motorOff := TRUE;
machineState := 1;
ELSIF setSpeed < motorSpeedCutOff THEN
motorOff := FALSE;
END_IF
__CATCH(exc)

machineState :
__ENDTRY

0l
w
[

runTime = 0
setSpeed = 0;
machineState := 1;

END_CASE

As is the case with many state machines, the machine is built around a CASE statement. For this
machine, Case 1is the off state. In other words, when in Case 1, the machine is turned off. Case 2 is
the machine running state. Case 2 computes and controls the motor speed. Since this is wrapped
in a TRY-CATCH block, if there is any error, the machine will go into Case 3, which is an error state,

and will then immediately transition into an off state.

Case 1 — non-running state machine

This is the state machine in what is considered an off state:

Device.Application.PLC_PRG

Expression Type Value
machineState INT 1
@ motorSpeedCutOff INT 10000
@ runTime INT 2
i setSpeed REAL 0
@ numOfParts REAL 3
& motor0ff BOOL
@ exc EXCEPT... RTSEXCPT_MOEXCEPTION

Figure 1.18: State machine in an off state

Chapter 1 33

The state machine s set to Case I by default, which means that the machine is in an off state. This
can be seen by examining the setSpeed variable being set to 8 and the motorOff variable being

in a TRUE state, which, in this case, means the motor is off.

Case 2 — running state machine

These are the variable outputs when the machine is running:

Device.Application.PLC_PRG

Expression Type Value
@ machineState INT 2
& motorspeed CutOff INT 10000
@ runTime INT 2
@ setSpeed REAL 4
@ numOfParts REAL a
@ motorOff BOOL FALSE
@ exc EXCEPT... RTSEXCPT_MOEXCEPTIOM

Figure 1.19: Running state machine

When the machineState variable is set to 2, the machine will go into a running state, in which
setSpeed is computed to 4 and the motor0Off variable is set to FALSE. This means that the motor

is running.
Case 3 — state machine exception thrown
To trigger an error, set machineState to 2 and set runTime to 0.

These are the variables when an error is thrown:

Device.Application.PLC_PRG

Expression Type Walue
@ machineState INT 1
@ motorSpeedCutOff INT 10000
@ runTime INT 0
@ setSpeed REAL]
@ numOfParts REAL 8
@ motoroff BOCL
@ exc EXCEPT... RTSEXCPT_FPU_DIVIDEEYZERO

Figure 1.20: Exception thrown

34 Advanced Structured Text: Programming a PLC in Easy-to-Read English

If you look at the value of the machineState variable, it is set to 1, which means off; however,
the runTime and numOfParts variables are zeroed out, which only happens when the machine
passes through the exception state. Essentially, the state machine transitioned states faster than

you could notice it.

Compared to the other concepts we explored, state machines are an amalgamation of different
concepts. A state machine is a pattern and, as such, how you implement the code will vary. Overall,

you should now have a decent understanding of state machines and the core concepts explored.

Chapter challenge

As a chapter challenge, integrate an expert system into the state machine. Add an extra state that
will house a simple knowledge base that can determine whether the user inputted an invalid

value when an error occurred. Be sure to add variables as needed to support the expert system!

Summary

This chapter has been an introduction to some of the more complex topics that you may encoun-
ter as a PLC programmer. We explored some advanced features of ST, such as pointers and error
handling, as well as some complex topics such as state machines and expert systems. So far, we
have only touched on the basics of what ST in the IEC 61131-3 standard can do. In the next chapter,

we’re going to explore how to get the most out of variables!

Questions
1. What are three keywords that can be used with a TRY-CATCH block?
What is an expert system?
What is the difference between a fact and a rule?
What is a state machine transition?
What is an FSM?

What is the main purpose of a TRY-CATCH block?

D A N

What are some applications for an expert system?

Chapter 1

35

Further reading

Have a look at the following resources to further your knowledge:

o CODESYS pointer: https://content.helpme-codesys.com/en/CODESYS%20

Development%20System/_cds_datatype_pointer.html

. CODESYS TRY-CATCH-FINALY: https://content.helpme-codesys.com/en/CODESYS%20

Development%20System/_cds_operator_try_catch_finally endtry.html

Get This Book's PDF Version and
Exclusive Extras
Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

UNLOCK NOW
]

https://content.helpme-codesys.com/en/CODESYS%20Development%20System/_cds_datatype_pointer.html
https://content.helpme-codesys.com/en/CODESYS%20Development%20System/_cds_datatype_pointer.html
https://content.helpme-codesys.com/en/CODESYS%20Development%20System/_cds_operator_try_catch_finally_endtry.html
https://content.helpme-codesys.com/en/CODESYS%20Development%20System/_cds_operator_try_catch_finally_endtry.html
packtpub.com/unlock

Complex Variable Declaration:
Using Variables to Their Fullest

Every programmer who has ever written a program more complex than the famous Hello World!
program has used variables in some manner. Variables and programming go hand in hand. A pro-
grammer can in no way avoid using variables. Variables and the way we group them are a very rich

topic and can extend well beyond simply naming a memory address and storing a single value in it.

If you have ever programmed in a language such as C++, you may be familiar with how variables
can be used and organized. Many of the advanced features that are often associated with complex
variables are actually complex data structures. Practically, though, these principles can be concep-
tually linked to variable usage and can drastically improve and enhance your code. This chapter

is going to demonstrate how to get the most out of variables by exploring the following topics:

e Constants

e Arrays

e Global variable lists
e Structs

. Enums

e Persistent variables

e Final project: motor control program

38 Complex Variable Declaration: Using Variables to Their Fullest

Technical requirements

As usual, to follow along with this chapter, all you will need is CODESYS installed and working

on your machine. The source for the examples presented can be found at the following URL:
https://github.com/PacktPublishing/Mastering-PLC-Programming-Second-Edition/tree/

main/Chapter%202.

Understanding constants

The values that are stored in variables often change. This behavior is quite useful when it comes
to things like taking inputs from an operator, such as the number of parts that a machine needs
to make. However, there are times when we need to store a value that doesn’t change. This may
seem counterintuitive, but it’s nonetheless very common. To accomplish this, we use what are

called constants.

To understand constants and how they differ from a typical variable, you need to first understand

what the following two terms mean:

e Mutable: Amutable variableis a value that can change during the execution of a program.
A mutable variable can be initialized (declared and set) when the program is compiled
and then overwritten by other data during the program’s execution. Thinking back to
the aforementioned example, consider a variable that holds the number of parts for a
machine to produce. In one run, the operator may want to make 20 parts, and in the next
run, they may want to make 100 parts. In terms of the program, the variable will need to
be the same; however, the value in the variable must change.

e Immutable: An immutable variable is a value that cannot change. In other words, when
avalueis assigned to a variable, it cannot be changed during the program’s execution. At
first glance, this may seem useless. What use is a variable that doesn’t change? In real-
ity, this is one of the most desired behaviors for a well-written program. Generally, you
want a value to change as little as possible. Every time a value changes, it will change the
behavior of a program in a positive or negative way. A few common reasons for why you

want a variable to be immutable are as follows:
e Makes code easier to test and understand
e Reduces the amount of erroneous data being introduced into the program

e Improves traceability in the program

e Prevents values from being changed accidentally

https://github.com/PacktPublishing/Mastering-PLC-Programming-Second-Edition/tree/main/Chapter%202
https://github.com/PacktPublishing/Mastering-PLC-Programming-Second-Edition/tree/main/Chapter%202

Chapter 2 39

In terms of applications, some common use cases for constants are:

e Mathematical constants such as Pi
e Setting machine values that should not be changed

e Avariable that will be used throughout the program and should not change

This list is by no means comprehensive, nor will you always need to declare constants for the
preceding bullet items. Whether or not you declare a constant is up to you and the application
that you're developing. In short, you will declare a constant when you want to add a level of

protection to ensure that the variable’s value does not change.

Declaring a constant s very simple; all you need to do to declare an immutable variable is employ

the following syntax:

VAR CONSTANT
const: INT := 23;
END_VAR

This code will declare a variable called const with an initial value of 23. Essentially, the syntax
is the same as declaring a regular variable with the additional keyword CONSTANT after the VAR
keyword. Much like regular variable blocks, you can declare as many constants in the variable

block as you want.
The CONSTANT block will go in the same tab that regular variables are declared in. For example,
the following code is valid:

PROGRAM PLC_PRG
VAR

test: INT;
END_VAR

VAR CONSTANT

const : INT := 23;

PI : REAL := 3.14;
END_VAR

Let’s say you attempt to change the value of the const variable to 6, as in the following code:

const := 6;

40 Complex Variable Declaration: Using Variables to Their Fullest

When you run this code, you will get a compile error. Figure 2.1 shows what will happen when

you attempt to change the value of a CONSTANT variable:

€ Co018: 'const' is no valid assignment target

Figure 2.1: Compile error

Constants are one of the most important concepts to understand when properly implementing
variables. No matter what you’re programming, a general rule of thumb is to have your variables
change aslittle as possible. As we have seen thus far and will see throughout the rest of the book,
changing the value of a variable is necessary; however, it is a good practice to declare whatever

you can as a constant.

Constants are just one conceptin the grand scheme of variables. The next concept we’ll look at is
arrays. Much like constants, arrays are another vital concept that every software engineer must

understand.

Investigating arrays

Arrays are one of the most common types of variables that you will use as a programmer. All
programming languages utilize arrays in some form; Structured Text is no different. Much like
C++, C#, or Java, arrays can be used in PLC programming as well. In fact, most PLC programs of
significant functionality will utilize arrays in some way. Before we dive into the depths of arrays,

we’re going to explore what they are.

A quick review of arrays

Arrays can be thought of as logically related values. By definition, an array is a data structure
that holds multiple values that are identified by an index. In other words, an array is a variable
on steroids. Where a variable can hold one value, an array can hold many. Consider a college
professor who has a class of 20 students. Also, suppose the professor must write a program that
can track each student’s GPA. For a situation like this, the professor may write a program such

as the following:

Studentl = 3.00
Student2 = 2.98
Student3 = 4.0
StudentN 1.0

Chapter 2 41

This program would serve the professor well for exactly one term. As soon as a new term starts,
the professor will need a new program that reflects the new batch of students. This will put the
professor in a bit of a dilemma. On the one hand, the professor needs a piece of software that can
keep track of GPAs, but on the other, they shouldn’t need to write a program each term. They need

a program to be robust enough to accommodate the influx of new students.
For a PLC programming system that supports the IEC 61131-3 standard, such as CODESYS, the
syntax for declaring an array is as follows:

ArrayName: ARRAY[<Start_Element>..<End_Element] OF <Type>

Unlike arrays in a traditional programming language such as C# or Java, which always start at o,
arrays in IEC 61131-3 can start at any value. This aspect of arrays in automation programming can
cause a bit of confusion for programmers who are classically trained developers. However, with
a little practice, it’s easy to get used to working with arrays that do not start with 0. To explore

this, let’s look at an example.

Array declaration

In the following example, we’re going to rewrite the GPA program with an array:

PROGRAM PLC_PRG
VAR

gpa : ARRAY[1..10] OF REAL;
END_VAR

In this case, the only variable we’re going to declare is the array itself.

Array logic

In terms of the logic, we will use the following code to load data into the array:

gpa[l] := 3.98;
gpa[2] := 2.80;
gpa[3] := 4.00;

gpa[4] := 1.99;
gpa[5] 3.45;

42 Complex Variable Declaration: Using Variables to Their Fullest

When this code is run, it will produce the output in Figure 2.2:

Device Application.PLC_PRG

Expression Type Value Prepar.. Address Comm..
® gpa[1] REAL 3.98
apal2] REAL 2.8
® gpa[3] REAL =
® gpa[4] REAL 1.99
gpa[s] REAL 3.45
® apa[6] REAL 0
% gpal7] REAL 0
apa[8] REAL 0
gpa[s] REAL 0
$ gpa[10] REAL 0

Figure 2.2: Array output

Notice that in the screenshot, there are 10 elements, but only 5 are showing an active value. This
isbecause in the source code, we only loaded data for the first five elements! This means that, like

with other languages, you can load as many or as few of the elements as you need.

In terms of automation, it is common to use arrays to store values such as weights or sizes for
parts produced during a production run or other data, such as settings for the machine. One
common application for an array is to store motor positions for a machine. For example, suppose
you have a robotic arm with three axes. A common mechanism to store the positions would be a
code snippet such as the following:

PROGRAM PLC_PRG

VAR

axes : ARRAY[1..3] OF REAL;
END_VAR

In terms of the logic, the code would look something like this:

axes[1] := <value>
axes[2] := <value>
axes[3] := <value>

From here, there would be other core logic that will process and move the arm into the specified

positions.

The arrays explored here are examples of what are called 1D arrays. Essentially, the arrays hold one
set of values. This is sufficient for most applications; however, arrays in IEC 61131-3-based systems

are capable of much more. In the next section, we’re going to explore multidimensional arrays.

Chapter 2 43

Multidimensional arrays

Multidimensional arrays can best be thought of as arrays embedded in arrays. In terms of auto-
mation, these are very handy. One application for multidimensional arrays is to control devices
in clusters. For example, you may have three banks of motors, with each bank containing five
motors. By using a multidimensional array, we can access the motor bank using an array index

and then specify the target motor with another index.

Before we can explore how to utilize the array, we need to first establish the pattern for declaring

amulti- or n-dimensional array!

Multidimensional array pattern
The syntax for declaring a multidimensional array is as follows:

multidimensionalArray: ARRAY[<outer>, <inner>] OF INT;

In terms of a working array, the code would look like the following:

multidimensionalArray: ARRAY[1..10, 1..5] OF INT;

This example will declare an array of 10 elements. Each element, in this array, is an array composed

of five elements. A more common way of expressing this is a 10 x 5 array.

As of now, this 10 x 5 array does nothing. To make this array do something meaningful and explore

how it works, we’re going to load some values into it.

Working with n-dimensional arrays

The general pattern for accessing a value in an n-dimensional array is with the following:

multidimensionalArray[<outer>, <inner>]

To explore this, we are going to implement a 10 x 5 array as we did previously, and we’re going

to load a value of 21 into the 2 x 3 element position.

The first step to implementing this program is declaring the array, which can be done with the

following code:

PROGRAM PLC_PRG
VAR

multidimensionalArray: ARRAY[1..10, 1..5] OF INT;
END_VAR

44

Complex Variable Declaration: Using Variables to Their Fullest

The logic for loading the number 23 into the target elements is as follows:

multidimensionalArray[2,3] := 23;

This essentially follows the pseudocode pattern. In this snippet, we’re accessing the third element

of the second array. When the code is executed, you should be met with Figure 2.3:

[£] PLC_PRG Xx

Device Application.PLC_PRG

Expression

»

L 2R 3R 3K R R 3K SR IR 3R 3R 3R AR R

= & multidimensionalArray

multidimensionalArray[1, 1]
multidimensionalArray[1, 2]
multidimensionalArray[1, 3]
multidimensionalArray[1, 4]
multidimensionalArray[1, 5]
multidimensionalArray[2, 1]
multidimensionalArray[2, 2]
multidimensionalArray[2, 3]
multidimensionalArray[2, 4]
multidimensionalArray[2, 5]
multidimensionalArray[3, 1]
multidimensionalArray[3, 2]
multidimensionalArray[3, 3]
multidimensionalArray(3, 4]
multidimensionalArray[3, 5]

5 2

2345855 %55%234 %

P
RAY ...

Value Prepar.. Addres

o oo o o oo

(=T = B = U = BRRN = B = B =]

Figure 2.3: N-dimensional array output

As can be seen in Figure 2.3, the number 23 is loaded into the correct location.

Multidimensional arrays are very powerful, but as can be seen, they can convolute code. You

generally want to use the fewest dimensions possible. The more dimensions an array has, the

harder itis to do the following:

e Troubleshoot the array

e Load values into the correct coordinates (location)

Chapter 2 45

Most textbooks will describe a multidimensional array as a series of rows and columns. The first
array can be thought of as rows, while the second array can be thought of as columns. I don’tlike
this explanation because when you end up working with a more complex array, such as a four- or
five-dimensional array, it can be nearly impossible to conceptualize it. In my opinion, it is better

to think of n-dimensional arrays as arrays embedded in arrays.

Typically, loading data into an array requires some type of loop. When working with #n-dimen-
sional arrays, you will need a loop that has n embedded loops. In the next example, we’re going

to explore how to loop through a 2 x 5 array!

Looping through an n-dimensional array

One of the most common operations that a developer will perform on an array, whether it’s
multidimensional or not, is to loop through it. To loop through a multidimensional array, you
will need to implement a series of embedded FOR loops. For each dimension an array has, you
will need one FOR loop. So, if you have a 1D array, you will need one FOR loop. If you have a 5D

array, you will need five FOR loops. To demonstrate this, let’s loop through the following array:

PROGRAM PLC_PRG

VAR
multidimensionalArray: ARRAY[1..2, 1..5] OF INT;
i, j : INT;

END_VAR

This is a 2 x 5 array. In other words, this is an array that has two elements, and each element is
an array with five elements. This is also a 2D array, which means that we will need two FOR loops

to process each element.

In this example, we’re going to load values into each element in the array. To accomplish this, we

can use the following code:

FOR i := 1 TO 2 DO
FOR j := 1 TO 5 DO
multidimensionalArray[i, j] := Jj;
END_FOR
END_FOR

46 Complex Variable Declaration: Using Variables to Their Fullest

In this case, the i and j variables are counter variables. We’re using the counter variables to ac-

cess the target element’s coordinates. When the code is run, we should get the following output:

Device Application.PLC_PRG

Expression Type Value
= & multidimensionalArray ARRAY ..,
multidimensionalArray[1, 1] INT 1
multidimensionalArray[1, 2] INT 2
% multidimensionalArray[1, 3] INT 3
multidimensionalArray[1, 4] INT -
% multidimensionalArray[1, 5] INT 5
multidimensionalArray[2, 1] INT 1
multidimensionalArray[2, 2] INT 2
multidimensionalArray[2, 3] INT 3
multidimensionalArray[2, 4] INT 3
multidimensionalArray[2, 5] INT 5
P INT 3
L INT 6

Figure 2.4: Looping through a multidimensional array
As can be seen, we have values of 1-5 repeated throughout the array.

As stated before, as a PLC developer, you need to be very careful when implementing large multi-
dimensional arrays. The more dimensions an array has, the harder it will be to work with. Though
there is no set rule for the maximum number of dimensions in an array, you typically want to

keep the dimension count to a minimum.

With arrays fully explored, we can move on to a more automation-centric topic: global variable
lists (GVLs).

Exploring global variable lists

Contrary to other forms of programming, global variables are quite common in automation pro-
gramming. This stems from different subsystems needing to know the state of a certain variable.
This section is dedicated to understanding what GVLs are and how to properly implement and

use them.

Chapter 2 47

What is a global variable?

Before we dive into what a GVL is, we need to understand what a global variable is. Typically,
when a variable is declared in one program organization unit (POU), it is not accessible from
another. This can cause a problem, as many machines must know the state of certain values,
such as emergency stops, to properly function. This is where global variables can come in handy.
A global variable is a variable whose scope is not bound to one POU. A global variable can be
read or modified from anywhere in the PLC project. This makes a global variable a convenient
way to keep track of critical states, such as whether certain subsystems are on or off, whether an
emergency stop is engaged, and many other things! They do have some downsides, though. In

the next section, we’re going to explore some of the dangers of global variables.

Dangers of global variables

In traditional programming, global variables are frowned upon, and their use is strongly dis-
couraged. They can easily be havens for bugs and cause erroneous behavior in a program. Since
a global variable can be accessed by anything in a program, it is very easy to accidentally alter a
value without realizing it. On top of that, when a program consists of hundreds or even thousands

of POUs, it can be nearly impossible to track down where the value is being erroneously altered.

Manually changing a global variable can also cause issues. This goes back to the potential of a
program being hundreds or thousands of POUs in size. If you manually alter a value, it can ricochet
across the program and cause the machine to behave in unexpected and potentially dangerous
ways. Overall, you typically only want to use global variables sparingly. Though they are conve-

nient to use, they can be very, very dangerous.

When to use a global variable

There are no hard and fast rules for when to use a global variable; however, there are applications
that are more appropriate than others. The following is a short and by no means exhaustive list

of when a programmer would use a global variable:

e States: Acommon use case for global variablesis to track the global state of the machine.
For example, mostindustrial machines utilize a state machine to operate. Itis not uncom-
mon to use a global variable to set the machine’s state. This will allow subsystems that

are not necessarily linked to the main system to keep track of the machine’s overall state.

e Logging: Often, log data needs to be shared across multiple files and systems. Typically,

the easiest way to do this in a PLC program is to use a global variable.

48 Complex Variable Declaration: Using Variables to Their Fullest

e Emergency stops: Though it can be argued that this would be considered a state, itis not
uncommon for PLC programmers to attach an emergency stop switch to a global variable.
The logic behind this is that each POU that needs to know about the state of the emer-

gency stop can easily read the state without having to pass the variables between POUS.

Up until now, all our projects have been composed of one POU file (PLC_PRG); however, programs
of significant functionality are usually composed of different POUSs (files). One such common
file is a GVL. When it comes to IEC 61131-3 based programming systems such as CODESYS and
similar systems, global variables are declared in unique ways compared to more traditional pro-
gramming languages such as Java or C#. In the next section, we’re going to explore declaring and

implementing global variables.

Creating a GVL

Compared to other programming systems, such as Java or C#, global variables in an IEC 61131-3
style system are typically declared in a GVL. GVLs typically must be manually added to a project.
The process for adding a GVL in CODESYS is as follows:

1. Right-click Application in the PLC project tree.
2. Hover over Add Object.
3. Click Global Variable List.

Once those steps have been completed, you should see the following window appear:

Create a new global variable list

Name
GVL

Add ' Cancel

Figure 2.5: Global variable list wizard

Chapter 2 49

This is the wizard that will generate the GVL. In the case of the GVL file, all you have to do is input
aunique name in the Name field and press Add. For this example, input testGVL into the Name
field. Once you press Add, testGVL should be added to the project tree. The code in the file should
resemble the following code snippet:

{attribute 'qualified_only'}

VAR_GLOBAL

END_VAR

This is the code that powers a GVL. Like the way we have been declaring variables before, a vari-
able is declared between the VAR_GLOBAL and END_VAR blocks.

Note

\/V Every programming system is different. This procedure works for CODESYS; however,
if you are using another IEC 61131-3 programming system or a system thatisnot IEC

61131-3 compliant, the procedure may vary.

Itis a common practice to have the term GVL as a suffix for the GVL’s name. This is a way for you
to clearly signal to other developers that the file is indeed a GVL, so they can know how to treat
it. For example, suppose you have a GVL for a water pump, you may opt to name it something
like waterPumpGVL.

Now that we know how to make a GVL, we need to see one in action!

Demonstrating a GVL

The first step in demonstrating a GVL is to add a variable to the GVL file that we just created. In
this case, add a variable called gv1Var to the GVL file and give it an int data type. When you are
done, your GVL file should look like the following:

{attribute 'qualified_only'}
VAR_GLOBAL

gvlvar : INT;
END_VAR

This code creates a single global variable. In other words, this code snippet creates a variable that
can be accessed by any POU in the PLC project. To access the global variable, we can implement
the following code in the PLC_PRG file:

testGVL.gvlVar := 32;

50 Complex Variable Declaration: Using Variables to Their Fullest

Notice that the pattern to access the global variable is as follows:

GVL_Name.Variable := <value>

When the code is executed, double-click the GVL in the project tree, and you should be met with
Figure 2.6:

Expression Type Value
@ ovivar INT 32

Figure 2.6: GVL output

When it comes to global variables, organization matters. In the next section, we’re going to ex-

plore some tips to organize your GVLs!

Organizing GVLs
Global variables and, by extension, GVLs, are dangerous as it is; couple that with an unorganized
program structure and you have a recipe for utter disaster. The key to properly using GVLs is

organizing them into cohesive units that are clearly and logically labeled.

Akey consideration is that you can create more than one GVL in a project. When it comes to orga-
nizing your code, you typically want more than one GVL. Each variable list should be responsible
for the global variables for a specific part of the system. For example, suppose you have a saw
machine. For this device, suppose there is a saw system, and there is a blower system that cleans
the saw blade. These are two distinct systems that compose the totality of the machine. This
means that if you opted to use global variables for the overall system, you should have one GVL

for the saw and one for the blower, as in Figure 2.7:

- I} Application
@ blowerGuL
& sawcvL
m Library Manager
[Z] PLC_PRG (PRE)
= E Task Configuration
= @ MainTask (IEC-Tasks)
8] PLC_PRG

Figure 2.7: GVL files

Chapter 2 51

To explore using these two GVLs, let’s look at an example. First, let’s implement an on variable

in sawGVL with the following code:

{attribute 'qualified_only'}
VAR_GLOBAL

sawState : BOOL;
END_VAR

In this example program, the sawState variable will dictate whether the saw is off or on.

In the next code snippet, we’re going to create a variable called blowerState that will serve the
same purpose with the exception of it controlling the blower:

{attribute 'qualified_only'}

VAR_GLOBAL

blowerState : BOOL;
END_VAR

To use the variables in the PLC_PRG POU, implement the following code:

sawGVL.sawState TRUE;
blowerGVL.blowerState := TRUE;

When you run the program, and you click on sawGVL, you should be met with Figure 2.8:

Expression Type Value

@ savistate BOOL

Figure 2.8: sawGVL state

If you see the result in Figure 2.8, double-click on blowerGVL, and it should match Figure 2.9:

Expression Type Value
@ blowerState BOOL

Figure 2.9: blowerGVL state

In the next section, we’re going to look at some safety considerations to consider when using GVLs.

52 Complex Variable Declaration: Using Variables to Their Fullest

Safety considerations for global variables

As alluded to before, global variables can cause the machine to behave unexpectedly. When trou-
bleshooting, it is not uncommon to manipulate variables to trigger certain behaviors. Though
it can be dangerous to manipulate any variable, global variables are particularly dangerous to
manually manipulate since they are often used to control many different aspects of the machine.
When manipulating global variables, you need to be extremely cautious, as triggering a variable

can induce the following:

e Damage to property, such as the machine or the surrounding area
e Injury to people around the machine

L] Death in extreme cases

Typically, it is best to avoid manually manipulating global variables, but at times, it is necessary.
If you do find yourself in a situation where you need to manually manipulate a global variable, do
not input random values. For example, if you try to manually change the position of a machine,
you should input a value that is realistic and is commonly used for that machine. Using junk data

can cause a ricochet effect across the machine that can putitinto a dangerous state.

Though dangerous and often frowned upon, GVLs offer a way to organize variables that can be
easily used across multiple parts of the overall PLC program. A safer way to organize variables
is to use what is known as a struct. Therefore, in the next section, we’re going to explore what

structs are and how to use them!

Understanding structs

Structs are a way to organize related variables. Conceptually, structs are similar to a GVL in the
sense that when properly implemented, a struct will contain all the necessary variables to accu-
rately describe a process; however, a struct differs in that, unlike a GVL, a struct is not globally
accessible. In other words, the values are not global and cannot be altered by any given part of
the overall program. In this section, we’re going to look at how to properly declare and imple-

ment a struct.

Declaring a struct

The key to declaring a structironically starts with a good name. Fundamentally, a struct describes
the attributes of a thing, so the name of a struct should be a noun. This is a pitfall that many
inexperienced programmers will fall into. Many inexperienced developers who don’t fundamen-

tally understand what a struct is can often give it a name that is a verb or a name thatis not fully

Chapter 2 53

descriptive of the struct’s responsibility. The end result will be a struct that doesn’t fully describe

anything and has an ambiguous functionality.
A quality struct name might be one of the following:

e Car
e Motorcycle
. Saw

. Power_Supply

Where a poorly named struct might be one of the following:

. Run
. Dodge
e Utility

As can be seen, the second batch of names is verbs. They do not accurately describe an object

and, as aresult, will produce a poor struct with an ambiguous purpose and poorly related values.

Normally, you will end the name of the struct with the word struct. This will signal to other
developers the exact nature of the data structure and eliminate confusion about how to use it.

For example, a common name for a struct might be something like the following: carStruct.

Note

\@/ Ending a struct name with the word struct isideal; however, many may not follow
thatrule.

Let’s now apply these rules and make a struct!

Implementing a struct

Creating a structis very similar to creating a GVL. Similar to a GVL, you create a structin CODESYS

or a similar system with the following steps:

1. Right-click Application.
2. Hover over Add Object.
3. Click DUT.

54 Complex Variable Declaration: Using Variables to Their Fullest

When you finish these steps, you should see a wizard that is very similar to the wizard used to
create a GVL, except that it has a few more options. The wizard can be viewed in Figure 2.10. For
now, the only thing that you will need to do is change DUT in the Name field tomotorStruct and
click Add. Once you click Add, a new file will appear in the application tree under Application.

DUT wizard

The following screenshot is the data unit type (DUT) wizard:

G
Create a new data unit type

Name
puT

Type
© Structure
(] Bxtends

() Enumeration

| Add : Cancel

Figure 2.10: DUT wizard

As stated earlier, this wizard will be used to create many different types of data structures and will

determine whether a struct will inherit from another struct. For now, do not check the Extends box.

After you change the name and press Add, the struct that is added will be similar to the code in
the following code snippet:

TYPE motorStruct :
STRUCT

END_STRUCT
END_TYPE

Similar to the way we add variables to a GVL, we add variables to a struct by simply declaring them.

Chapter 2 55

Consider this example: Suppose we have a motor, and we want a specific struct to manage the
motor’s current speed, maximum RPMs, and minimum RPMs. We could use the following code

in the struct:

TYPE motorStruct

STRUCT
motorSpeed : INT;
maxRPM : INT;
minRPM : INT;

END_STRUCT

END_TYPE

Unlike GVLs, you have to explicitly state whether a POU can use a struct or not, which is why
they are safer to use than GVLs. To do this, you create a variable in the variables list of the file

that needs to manipulate the struct:

PROGRAM PLC_PRG
VAR

motorl : motorStruct;
END_VAR

In this case, motor1 is a reference to the motorStruct data type. In short, motor1 will have at-
tributes called motorSpeed, maxRPM, and minRPM that you can manipulate in a similar fashion to
GVL variables

Multiple objects

Astruct can best be thought of as an object’s attributes. In the preceding example, we have motori,
which may need its own operational parameters to properly do whatever it is that it needs to do
in the system. However, motor2 may need a different set of values. In this case, motor2 will have
all the attributes thatmotor1 has, but the operating values will differ. The beauty part of a struct
is that we can recycle the motorStruct attributes and give motor2 different values. Consider the

following code:

PROGRAM PLC_PRG
VAR
motorl : motorStruct;
motor2 : motorStruct;
END_VAR

56 Complex Variable Declaration: Using Variables to Their Fullest

In this case, motor1 will reference motorStruct and be able to use all of its attributes, and motor2
will be able to do the same. Itis important to remember that though motor1 and motor2 reference
the same struct, they are independent of each other. This means we can set the values for each mo-

tor as needed without affecting the other motor. To demonstrate this, consider the following code

The values for motor1 and motor2 can be set with the following logic in the PLC_PRG file’s logic

section:
motorl.maxRPM .= 3000;
motorl.minRPM 1= 1000;

motorl.motorSpeed := 1500;

motor2.maxRPM ;= 4000;
motor2.minRPM := 1000;
motor2.motorSpeed := 2000;

These are the outputs when the code is run:

Expression Type Value
= @ motorl motorStruct
& motorSpeed INT 1500
& maxRPM INT 3000
@& minRPM INT 1000
= @ motor2 motorStruct
% motorSpeed INT 2000
& maxRPM INT 4000
@ minRPM INT 1000

Figure 2.11: Motor struct output

As can be seen, though both motors are referencing the same struct, the values are clearly inde-

pendent of each other.

All things considered, the preceding example is a way of recycling code; however, there is another,

more powerful trick to recycling code in a struct!

Inheriting with structs

If you think about objects, you may have a base object that s a vehicle, and another that represents
a car. When you consider a vehicle, it will typically have an engine and wheels. Now, if you think
about a car, it has an engine and wheels, but it also has a steering wheel. In the modern program-
ming landscape, where we don’t want redundant code, it doesn’t make much sense to have to
redeclare the engine and wheels variables. When it comes to structs, there is a shortcut to getting

the use of the vehicle variables in the car struct. To do this, we can use what is called inheritance.

Chapter 2 57

Inheritance is an object-oriented principle, and we’re going to dive deeper into it in the following
chapters. For now, think of inheritance as a way of copying and pasting variables from one struct
to another without physically doing it. To demonstrate inheritance, create two structs, and name
onevehicleStruct and the other carStruct. When you create carStruct, ensure that you check

the Extends box and enter vehicleStruct in the box next to it, as in Figure 2.12:

id DUT

S
® Create a new data unit type

Name
carStruct

Type
© Structure
@ Extends vehideStruct

() Enumeration

() Alias
Base type

() Union

Figure 2.12: The carStruct setup

In vehicleStruct, set up the following variables:

TYPE vehicleStruct
STRUCT
wheels : INT;
engine : BOOL;
END_STRUCT
END_TYPE

In carStruct, set up the following variable:

TYPE carStruct EXTENDS vehicleStruct
STRUCT

steeringWheel : BOOL;
END_STRUCT
END_TYPE

58 Complex Variable Declaration: Using Variables to Their Fullest

Notice that carStruct has the EXTENDS keyword. This keyword is used to signal to the program-
ming system to use the variables of vehicleStruct in carStruct. If the steps in Figure 2.12 are
followed properly, this code will be automatically generated. Once the variables are implemented,

you can move on to implementing the logic in the PLC_PRG POU file.

In the variable section of the PLC_PRG POU, implement the following:

PROGRAM PLC_PRG
VAR

carl : carStruct;
END_VAR

Next, implement the following logic:

carl.engine := TRUE;
carl.steeringhheel = TRUE;
carl.wheels i= 4;

When the code is executed, you should be met with the following:

Expression Type Value
= P carl carStruct
= @ SUPER" vehides...
@ wheaels INT 4

engine BOOL

#® steeringWheel BOOL TRUE

Figure 2.13: Struct inheritance

As can be seen, though the carl variable is referencing carStruct, we are able to access the

variables in vehicleStruct!

In all, inheritance is a way of recycling code. As we will see in future chapters, there are certain
relationships that need to be followed to get the most out of extending a struct. For now, we’re

going to explore another important data structure known as an enum.

Getting to know enums

Like a struct, an enumeration (enum) is also a user-defined data type composed of comma-sep-
arated named values. The enumeration’s named values are constants; they and their numeric
assignments are fixed at design time. Enumerations are excellent tools for defining threshold
limits, motor speeds, temperature limits, and more. You declare an enumeration with the same

wizard that was used to declare a struct, so be sure to view Figure 2.10.

Chapter 2 59

For this example, create an enum named motorSpeeds, using the same DUT wizard as before,
but by checking Enumeration as opposed to Structure, and leaving Textlistsupport unchecked.
For simplicity, implementmotorStruct from the first struct example. Once the code is generated,
you can remove the enum_member attribute thatis auto-generated. Once that is done, modify the
code to match the following:

{attribute 'qualified_only'}

{attribute 'strict'}

TYPE motorSpeeds

(
maxSpeed := 2000,
minSpeed := 500
)
END_TYPE

Notice that the values in the enum end with a comma, except for the last entry. This is because
values in an enum are separated with a comma; this is how the system knows when one value

ends and the next begins.

The PLC_PRG variable should match the following:

PROGRAM PLC_PRG
VAR
motorl : motorStruct;

END_VAR

For this project, we only need the reference for motorStruct.

After adding the reference variable, modify the code in the PLC_PRG POU to match the following:

motorl.maxRPM := motorSpeeds.maxSpeed;
motorl.minRPM := motorSpeeds.minSpeed;

motorl.motorSpeed := 1500;

When you run this program, you should get the following output, which is the result of setting

the motor’s speeds with an enum:

Expression Type Value
= @ motorl motorStruct
@ motorSpeed INT 1500
& maxRPM INT 2000
@ minRPM INT 500

Figure 2.14: Motor speeds set with an enum

60 Complex Variable Declaration: Using Variables to Their Fullest

Notice how the maxRPM and minRPM fields now reflect the values set in the enum.

If you opt not to include a value for an enum entry, remember that the first value declared will
be set to @ by default, and each subsequent entry will be set as the previous value plus 1. In our
case, if we didn’t have the values set, maxSpeed would be 9, and minSpeed would be 1. Now that

we have a grasp on enums, we need to shift our attention to our final project.

Final project: Motor control program

To demonstrate all the concepts we have covered so far, we’re going to build a motor control
program. The program will simulate five motors. The motors will be in an array, and the program

will set the speed of the motors based on values in a GVL. To begin, let us create a motor structure:

TYPE motorStruct :

STRUCT
motorStateMsg : STRING[20];
motorState : BOOL;
motorSpeed : INT;

END_STRUCT

END_TYPE

This code will create a struct that will dictate whether the motor is on with a Boolean variable,
motorSpeed (which will be set with an enum value), and a STRING that will tell which state the
motor is in. After the structure is created, add an enum named motorSpeeds. Once you create the

enum, add the code to match the snippet:
{attribute 'qualified_only'}
{attribute 'strict'}
TYPE motorSpeeds :

(
maxSpeed := 4000,
avgSpeed := 3000,
minSpeed := 2000,
offSpeed := 0

);
END_TYPE

Chapter 2 61

Next, we need to add a GVL called motorStateGVL. After you create the list, add the variables to
match the code, as shown in the following snippet:
{attribute 'qualified only'}
VAR_GLOBAL
maxSpeed : BOOL;
minSpeed : BOOL;
avgSpeed : BOOL;
END_VAR

Now, in the PLC_PRG POU file, we will create an array of motorStruct references and a counter

variable, like so:

PROGRAM PLC_PRG

VAR
motors: ARRAY[1..5] OF motorStruct;
count : INT;

END_VAR

What this code will do is create an array of five motors of the motorStruct type. The main logic

of the file should match the following:

IF motorStateGVL.avgSpeed = TRUE THEN
FOR count := 1 TO 5 DO

motors[count].motorStateMsg := 'avg speed';
motors[count].motorState := TRUE;
motors[count].motorSpeed := motorSpeeds.avgSpeed;

motorStateGVL.minSpeed := FALSE;
motorStateGVL.maxSpeed := FALSE;
END_FOR
ELSIF motorStateGVL.maxSpeed = TRUE THEN
FOR count := 1 TO 5 DO

motors[count].motorStateMsg := 'max speed';
motors[count].motorState := TRUE;
motors[count].motorSpeed := motorSpeeds.maxSpeed;

motorStateGVL.avgSpeed := FALSE;
motorStateGVL.minSpeed := FALSE;
END_FOR
ELSIF motorStateGVL.minSpeed = TRUE THEN
FOR count := 1 TO 5 DO

62 Complex Variable Declaration: Using Variables to Their Fullest

motors[count].motorStateMsg := 'min speed’;
motors[count].motorState := TRUE;
motors[count].motorSpeed := motorSpeeds.minSpeed;
motorStateGVL.avgSpeed := FALSE;
motorStateGVL.maxSpeed := FALSE;
END_FOR
END_IF

This code will check to see which setting the motors are set to and loop through the array to de-
termine which speed from the enum to set them to. For example, set avgSpeed in themotorState

GVL to TRUE, and you should be met with the output in Figure 2.15:

Device Application.PLC_PRG

Expressicn Type Value
= @ motors ARRAY ...

= i motors[1] motorst...
@ motorStateMsg STRIMG... ‘'avg speed’
motorState BOOL
@ motorSpeed INT 3000

= & motors[2] maotorst...
@ motorStateMsg STRIMG... 'avg speed'
@ motorState BOOL
@ motorSpeed INT 3000

= i motors[3] matarSt...
@& motorStateMsg STRING... ‘'avg speed’
& motorState BOOL
@ motorSpeed INT 3000

= @ motors[4] maotorst...
@ motorStateMsg STRIMG... 'avg speed'
@ motorState BOOL
@ motorSpeed INT 3000

= motors[5] motorst...
@ motorStateMsg STRING... 'avg speed'
@ motorState BOOL TRUE
@ motorSpeed INT 3000

@ count INT &

Figure 2.15: Motor array state

Now, turn whichever variable you set to TRUE back to FALSE, set another variable (such as minSpeed)

to TRUE, and view your output.

Chapter 2 63

Summary

In this chapter, we explored many types of variables, such as GVLs, enums, constants, structs,
and more. In traditional PLC programming, concepts such as these are rarely used. However, as
technology advances, these concepts are going to become more ingrained in the development of
automation equipment. The concepts we have explored in this chapter will allow you to better
organize your code. They will also serve as a way to better encapsulate data. Not every PLC system
will support these advanced concepts; however, when they do, it is recommended that you use

them where applicable because they can greatly improve the quality and reusability of your code.

As we continue our journey into more advanced PLC programming, variables will play a vital
role. In the next chapter, we are going to explore functions, and understanding variables will be

pivotal in getting the most from them.

Questions
Whatis a GVL?

—_

What suffix should a GVL have at the end of its name?

Suppose thereis a 3D array. How many FOR loops are needed to loop through each element?
What s a constant?

How does a constant differ from a normal variable?

Whatis a struct?

What is a key difference between a struct and a GVL?

What suffix should the struct file have?

Y oo N ok w N

What are some issues that global variables cause?

Further reading
. CODESYS enumerations: https://content.helpme-codesys.com/en/CODESYS%20
Development%20System/_cds_datatype_enum.html

. CODESYS Structs: https://content.helpme-codesys.com/en/CODESYS%20
Development%20System/_cds_datatype_structure.html

https://content.helpme-codesys.com/en/CODESYS%20Development%20System/_cds_datatype_enum.html
https://content.helpme-codesys.com/en/CODESYS%20Development%20System/_cds_datatype_enum.html
https://content.helpme-codesys.com/en/CODESYS%20Development%20System/_cds_datatype_structure.html
https://content.helpme-codesys.com/en/CODESYS%20Development%20System/_cds_datatype_structure.html

64 Complex Variable Declaration: Using Variables to Their Fullest

Join our community on Discord

Join our community’s Discord space for discussions with the authors and other readers: https://

packt.link/embeddedsystems

https://packt.link/embeddedsystems
https://packt.link/embeddedsystems

Functions: Making Code
Modular and Maintainable

As a college-level programming instructor, the first thing I like to teach after teaching the ba-
sics, such as flow control, is functions. For many new and non-classically trained programmers,
the purpose of functions often makes little sense. They tend to see functions as a useless code
organization technique that convolutes their project. I usually counter this logic by stating that
programmers should be like sewists. When a sewist creates a quilt, they take individual patches
and sew them together. When it’s time to create the quilt, there is little concern about creating

a patch. The only thing they are worried about is integrating the patch into the quilt as a whole.

For the most part, a programmer should consider themselves to be a sewist of software, and
the patch of choice should be functions. As we will explore in this chapter, codebases should be
as modular as possible. In a well-written, modular program, adding or removing functionality
will be as simple as adding or removing function calls. We will explore functions through the

following concepts:
e Whatmodular code is and the reasons for using it
e Functions
e Return types
e Arguments
To combine everything, we are going to build a temperature conversion function. The temperature

converter is a common implementation of a method because the code will need to be run many

times and it will need be in a singular location.

66 Functions: Making Code Modular and Maintainable

Technical requirements

The code for the examples can be found here: https://github.com/PacktPublishing/Mastering-
PLC-Programming-Second-Edition/tree/main/Chapter?%203.

What is modular code?

A fallacy many inexperienced programmers make is to dump all their programming logic into
a central location. The fallacy stems from developers thinking that by having all their code in a
central location, their program will be easier to maintain. This is a major design flaw that can

easily kill a program. Therefore, to effectively combat this issue, programmers use modular code.

A definition of modular code

Modular code can best be described as code that is broken out into logical units of functionality.
That is, a well-written program will consist of multiple logically organized files (modules), and
each file will consist of some type of related functionality. For example, a code module might be

the functionality for a motor drive, a series of actuators, or unit of logically related values.

In essence, the easiest way to think of a modular program is to think of the human body. Your
body is composed of many different organs that all perform a certain task. For example, your
heart pumps blood throughout your body while your lungs process air. A program should be
thought of in the same regard. A program should be broken into multiple parts, and each one of

those parts should perform a single task and be optimized to perform it well.

A close example of modular code could be the GVLs and structs we explored in Chapter 2. Essen-
tially, the way we organize GVLs and structs can be thought of as a way to modularize code. In
IEC 61131-3, there are other and arguably better ways to organize code. In fact, there are many

ways to easily architect a modular program.

How code is organized
There are many ways to create modular code. To create modular code, we use special files called
Program Organizational Units (POUs) and Data Unit Types (DUTs). Some common constructs
that can be used to organize code are as follows:

e Functions

e Function blocks

e Structs

e Enums

. GVLs

https://github.com/PacktPublishing/Mastering-PLC-Programming-Second-Edition/tree/main/Chapter%203
https://github.com/PacktPublishing/Mastering-PLC-Programming-Second-Edition/tree/main/Chapter%203

Chapter 3 67

Note

POUs and DUTs are not technically files, such as files on a disk. However, many
\Q// programming systems organize these constructs in a file-like container in the PLC
project tree. As a result, many developers will usually refer to and treat these con-
structs as files. Therefore, the word file will be used as a catch-all term to refer to

one of these constructs.

Each of these files will have a different purpose. For example, the struct type that we explored in
the previous chapter is designed to provide a logical unit to declare related variables, while GVLs

are used to declare global variables that can be used throughout a project.

This chapter is concerned with a coding unit called a function. A function is one of the fundamental
building blocks for any program. Essentially, this code unit is a callable block of code that does
one thing very well. Before we get into the mechanics of using functions, we first need to explore

some modulation strategies!

Strategies for creating modular code

Creating modular code requires experience. As you progress as a developer, you will naturally
migrate to creating modular code via trial and error. However, to jump-start the process, there

are a few strategies you can keep in mind to help flesh out a modular program.

Limiting the amount of code in the PLC_PRG file
The PLC_PRG file is an entry point for a PLC program. This file should only contain the logic nec-

essary to start the machine and coordinate its overall operations. In other words, you should
not overburden this file with too much logic. The one and only responsibility for this file should

be to call the necessary modules to start and possibly coordinate the operation of the machine.

The PLC_PRG file should be thought of as a conductor of an orchestra, in that this file should only
control the execution and coordination of modules that compose the PLC program, without
handling specific functionality. This is where many developers can make a mistake. Packing too
much logicin this file can lead to a very complex entry point for the PLC program, and the file can
become overly convoluted. This can harm maintainability and cause misunderstandings about
how the machine will operate. It will also typically harm modularity as packing the PLC_PRG file

with logic can burden the file with too much responsibility.

68 Functions: Making Code Modular and Maintainable

There is no silver bullet for creating an effective PLC_PRG file. Typically, you want to only do
things such as setting variables or calling functionality from this file; in other words, as we will
seein this and subsequent chapters, call functions! Since the PLC_PRG file is best thought of as the

conductor of the program, it is ideal to use this file to house the program’s main state machine.

Creating a quality PLC_PRG file is of paramount importance for a well-crafted modular program;
however, there are other ways to ensure modularity. In the next section, we’re going to explore

the separation of responsibilities.

Separation of responsibilities

The key to creating modular code resides in what’s called the separation of responsibilities. Es-
sentially, when developing a PLC program for a machine, a solid understanding of how the ma-
chine works and the individual components of the machine is necessary. For example, suppose
you have an integrated robot, that is, a machine composed of a robotic arm that can home itself,
paint a part, and start an oven. For a system such as this, a module could be moving the robot to
a spray-paint position, turning on pumps to start the flow of paint to the robot, starting the oven,

or homing itself. The key here is that one module is responsible for one thing.

Understanding the separation of responsibilities will be explored throughout the rest of this book.
Mastering this skill is as much an art as it is a science. However, for now, we’re going to switch

gears and explore why we should use modular code.

Why use modular code?

There are many reasons to use modular code; however, the following is a list of some very com-

mon ones:

e Reusability: Arguably, the mostimportant reason to use modular code is reusability. Much
like the parts of a car, a code module can be used in multiple projects and in multiple parts
of the project, which cuts down on development time, unexpected behaviors, and bugs.

e Coderemovability: Much like with a mechanical machine thathas been upgraded to use
fewer parts, amodular program should allow for the easy removal of all individual modules.

e Code upgrades: When a program is modular, it will be easy to upgrade. If a behavior
must be changed, all you need to do is find the code module that handles that behavior
and change it without needing to break other, unrelated code. Upgrading modular code
is like upgrading a car part, you only need to upgrade that part and the necessary related
parts for it to work.

e Code scalability: Modular code is usually scalable, meaning that codebases can be more

easily maintained and modified as they grow.

Chapter 3 69

Now that we understand what modular code is and why we should use it, we’re going to switch

gears and actually implement a code module with functions!

Exploring functions

On the surface, functions may seem like we are merely splitting up a program into multiple files;
however, this is a vast oversimplification and misunderstanding. At their core, functions are
callable blocks of code that are designed to perform a task. Before we can start coding a function,

we need to first understand how to name one.

The art of naming functions

Function naming is a bit of an art. Functions are actions that a program will perform. For exam-
ple, a function could be tapping the brakes on a car, calculating the sum of some numbers, flying
to Mars, or anything of the like. Since functions are actions, we typically give them a verb name.
For example, if we were creating a method to fly to Mars, we might name it something such as

flyToMars. Here, we have a name that is indicative of an action.

Though you should lean on using a verb for a name, there are many functions named simply
length or size that are floating around different languages and plugins. A verb should be used
whenever possible, but from a practical point of view, context and situations matter. There are
also times when using a verb can bloat the name of a function and add no real value. For exam-
ple, if we have a program called convertSize, and in the program we have a function called
squareLength, it’s obvious that the function’s job is to convert the length of a square. It’s okay

to use a non-verb in the following scenarios:

e Math operations, such as creating a function for a mathematical operation: for example,
calculating the Fibonacci sequence.

e Effectively acting as a function that gets something.

e Verb names are reserved words in the language, convoluted, or redundant.

e When anoun or non-verb is better suited. For example, names such as LedOn, Led0Of+, on,
and off are common in many systems, especially embedded ones such as PLCs.

e Documentation and learning material will sometimes use simplistic nouns to reduce
mental complexity. This is a teaching strategy that is often used in the classroom and
will be used from time to time in this book but should be avoided where possible in

production code.

Realistically, every codebase of significant size will use nouns as names, and you will also find
yourself using nouns. These facts of life do not negate the verb rule or relegate it in any way. You

should use verb-based names wherever possible!

70 Functions: Making Code Modular and Maintainable

In all, itis best to use a verb or verb-type name for a function; however, context and, more impor-
tantly, the standards of your team matter. There is one naming rule that should never be broken,
which is including the word and in the name. Names with the word and indicate more than one,
which is very bad for a function. In the next section, we’re going to explore why we should never

see the word and in a function name!

What goes into a function?

Architecting good functions is an art. Even traditional programmers often struggle with writing
quality functions that are easy to use. A major reason for this is that they often pack too much
responsibility into a given function. There is one law that should always be followed when writing

a function, and it goes as follows:
A function should do one thing only and do it well!

Having a function that does more than one thing will break modularity and risk the introduction

of bugs, unscalable code, and, above all else, redundant code.

A good test to determine whether your function is only doing one thing and one thing well is to
summarize it in a sentence. If the word and appears in the sentence, then the function is doing
too much. To fix this issue, break the statement after the word and into a function of its own. For

example, consider these two sentences:

e This function turns on the assembly line

e This function turns on the assembly line and hopper

The definition of the first function is correct. This sentence describes a function that does one
thing (turns on the assembly line). On the other hand, the second function does way too much.
The second function turns on both the assembly line and the hopper. If a modification ever must
be made to either one of those operations, or a situation occurs where only one of the operations
needs to be turned on, you're going to risk either introducing defects into the other process or

having to create redundant code to control the targeted operation.

Another good rule to follow is to break out redundant code into a separate function. If you see two
or more lines of code constantly appearing throughout your program or function file, consider
placing that code into a function of its own. Try your best to determine what that code is doing

and putitin a function with a name that describes its purpose.

Now that we have explored the fundamental concepts of a function, such as why we use them,
when we use them, and what should go into a function, we can move on and explore how to
create one. Compared to other languages, creating a function in many IEC 61131-3 systems and,

more specifically, CODESYS, is a bit more in-depth.

Chapter 3 71

Creating a function

Unlike in many traditional languages, a function in a system such as CODESYS or TwinCAT lives
in a file of its own in the project tree. If you're coming from a background in a general-purpose
programming language such as Java or C#, functions are split across different files/POUs in the
project tree, like the way classes are broken out in those languages. This is where the misconcep-
tion of equating splitting files with functions comes from. If you are a traditional programmer,
this may throw you off, as you will be used to implementing multiple functions or methods in
a single file construct. However, this feature helps promote modularity. In short, one file equals

one function, which equals one responsibility for the program!

To create a function, the first thing you should do is create a new Structured Text program, then
right-click Application, navigate to Add Object, and click POU. When you do this, you should
be met with the following popup:

ﬂ | Create a new POU (Program Qrganization Unit)

Name
POU

Type
) Program
© Function block
|_JExtends
|_| Implements
[Final () Abstract

Access specifier

Method implementation language
Suad ST
() Function
Return type

Implementation language
Structured Text (ST)

 Add \ Cancel

Figure 3.1: POU wizard

72 Functions: Making Code Modular and Maintainable

In my opinion, Figure 3.1 shows one of the most used windows for any object-oriented programmer
developing with CODESYS or a similar system. At first glance, we see options called Function
and Function block. There is a major difference between these two options, and they should not
be confused. A function block is akin to a class in C++, Java, or other traditional programming
language. For this chapter, we will only be interested in the Function option. The POU that the
Function option will create is a callable block of code. Essentially, these are the sewist patches

that were alluded to earlier.

For our example, we are going to select the Function option and input Addition into the Name
field. For Return type, click the button with the three dots, and select INT. The return type is very
important for functions. It specifies the data type of the value that the function will ultimately

output. For now, just ensure that your POU creation wizard matches Figure 3.2:

ﬂ | Create a new POU (Program Organization Unit)

Name
Addition

Type
() Program
(") Function block

Accessspecifier

Method implementation language

© Function

Return type INT

Implementation language
Structured Text (ST)

| Add ' Cancel

Figure 3.2: POU setup for the Addition function

Chapter 3 73

Note

\G/‘ We use the word Addition for the function name despite it not being a verb because

the word Add is an illegal name for a custom function.

Notice in the preceding figure that an Implementation language option can also be selected.
This is very important to remember, as each function can be written in a programming interface
that best suits it. For example, for simple programs, Ladder Logic might be more appropriate for
simple operations such as flipping a bit. Regardless, for this example, we’re going to keep the

language as Structured Text (ST).

The function we are going to make will add two hardcoded numbers and return the value. If you’re
not sure whatreturn values are, we’re going to explore thatin the Examining return types section of

this chapter. For now, your main focus should be on simply understanding how a function operates.

After filling out the wizard and clicking the Add button, a file with the name Addition should
be generated in the file tree under Application. Navigate to the file and open it. You should see

the following code:

FUNCTION Addition : INT
VAR_INPUT

END_VAR

VAR

END_VAR

Notice that there are two variable sections. The VAR_INPUT section is used for variables that will
be used for what are called arguments or parameters. This is a concept that we will explore in
the Understanding arguments section. The VAR section is used to declare variables that are internal
to the function. This means that the variable cannot be accessed from outside the function and
cannot be used for arguments. For this example, let’s add two variables, a and b, of type INT to
the VAR section. We’re going to assign the values 3 and 4 to the variables, respectively. In other

words, your code should match the following snippet:

FUNCTION Addition : INT

VAR_INPUT
END_VAR
VAR
a : INT := 3;
b : INT := 4;

END_VAR

74 Functions: Making Code Modular and Maintainable

In the logic section of the Application file, input the following code:

Addition := a + b;

Essentially, this line of code means that the output of the function is the sum of the a and b

variables.

The code in a function block will not execute until it is called. Generally, this is the purpose of
the PLC_PRG file. Remember — in most well-written programs, this file is equivalent to the main
function or entry point for a program. Its main job is to only invoke functions that are needed to

kickstart and run the PLC program. For the most part, you want this file to be as short as possible.

With thatin mind, a function is invoked by calling its name and passing in the necessary arguments.
You can call a function from another function or any other file that is allowed to call functions.
For our example, we're going to call the function from the PLC_PRG file. Therefore, navigate to
that file, open it, and add the following code:

PROGRAM PLC_PRG

VAR

sum : INT;
END_VAR

This variable will be used to hold the return value from the function. Since our function’s return
value is of the integer type, it is important to declare the sum variable as an integer as well.
This code snippet shows how a function is invoked:
sum := Addition();
The code boils down to invoking the Addition function and assigning the return value to the

sumvariable. When the code is run, you should see an output thatis congruent to the screenshot

in Figure 3.3.

Expression Type Value Prepar.. Address Comm..
@ sum INT 7

Figure 3.3: Output from the Addition function

In the real world, a function will often need to return some type of data to the line that invoked
it, similar to what we did here. This may be a calculation, a status, or anything else. To master

this concept, we’re going to explore how to return data from a function!

Chapter 3 75

Examining return types

Return types can often be very confusing for new programmers. The main hang-up for many of
the students I have taught is that they often have a difficult time understanding what a return
typeis. As we have seen, a return type is simply the kind of value that a function returns. Expand-

ing this, the actual value that a function returns can be thought of as the output of the function.

Each function must be declared with a return type. This return type can be any data type that is
supported by IEC 61131-3; for example, the integer data type from the Addition function. In all, a
function can return exactly one value of the type the function was declared with. So, if you declared
afunction with areturn type of INT, you could only return an integer, similar to what we did with
the Addition function. As we saw, returning a value is as simple as assigning the function name
to a statement, as we did in the preceding code snippet. Overall, this is a simplistic definition of
return types. If this concept is still unclear, you will understand it as the book progresses, as this

will be a concept that will be used from here on out.
Key takeaways about return types are as follows:
e Areturn typeis a function’s output
e There can be exactly one return type per function

e One function can return exactly one value

e Areturn type can be any supported data type

Note

V4 In CODESYS, it is possible to have more than one output value from a function by
\G/‘ declaring additional variables in the VAR_OUTPUT block; however, only the value
assigned to the function’s name is considered the true return value. The others are

output parameters.

Even though a function does return a value, sometimes it shouldn’t. Sometimes we simply want
to terminate the function before the value can be returned. For this, there is a special command
known as RETURN.

76 Functions: Making Code Modular and Maintainable

The RETURN statement

A function does not always have to return a value. In certain cases, it might be more appropriate
to simply terminate a function as opposed to returning a value. For example, an otherwise fatal
error that won'’t return a valid value or something along those lines will usually benefit from

using a RETURN statement.

Compared to traditional languages such as Java or C++, the RETURN statement does not return a
value. However, as stated before, it does terminate a function. This means thatitis very common
to use the RETURN statement in some type of control statement, such as in an IF statement or in-
side a CATCH block. Consider the following scenario. Suppose we have a system where the RPMs
of a motor are input as a multiple of 1,000. If the operator wanted to program the machine for

4,000 RPMs, they would enter the value as 4, and the function would multiply the value by 1,000.

The function should return the converted RPM values; however, if an invalid entry is input, such
as a negative number, the function will simply terminate. For this example, let’s create a new
function called RPMs with a return value of type INT, and once the file is generated, add a variable

called rpmsInput in the VAR section. Once done, your code should look like the following:

FUNCTION RPMs : INT
VAR_INPUT
END_VAR
VAR

rpmsInput : INT := 4;
END_VAR

The following code snippet is the function’s main logic, which is responsible for converting the

user input into the proper RPM value or executing a RETURN command for an invalid value.

This is the logic that represents the RPM function:

IF rpmsInput < 1 THEN

RETURN;
ELSE

RPMs := rpmsInput * 1000;
END_IF

Chapter 3 77

This code will return the converted RPMs as long as rpmsInput is greater than or equal to 1. If the
value is less than 1, then the function will simply terminate. To run this code, the PLC_PRG file
will also need to be modified to include a variable named x of type INT and the following logic,

which will invoke the RPM function:

X := RPMs();

When the code is run with all the values as shown, you should see the output presented in

Figure 3.4.
® x INT 4000
Figure 3.4: Successful RPM conversion

Now, if rpmsInput is changed to -2, you should be met with an output similar to Figure 3.5.

o

P x INT
Figure 3.5: Invalid RPM conversion

For Figure 3.5 the RETURN defaulted the value to 0. In other words, the value we got was not from
the RETURN statement but from the function itself. Overall, the RETURN statement resulted in the

function terminating before a value was returned.
There are four important takeaways regarding the RETURN statement. They are as follows:

e The RETURN statement will terminate a function, usually before a value is returned. This

means that the RETURN statement is the last command executed in the function.

e Afunction can contain many different RETURN statements when they are used in a control
statement, but only one will execute per function call.

e The RETURN statement is usually wrapped in some type of control statement, such as an
IF statement or a CATCH block.

e Unlike many traditional programming languages, the RETURN statement does not return

a value; it simply terminates the function.

Our Addition function is great as long as we want to add 4 and 3. However, outside of that very
specific use case, the function is useless. In the real world, we would want our functions to be
more generic. In the case of our example function, it should be able to add more than two numbers.

Therefore, it is time to explore function arguments!

78 Functions: Making Code Modular and Maintainable

Understanding arguments

Where return types are a function’s output, arguments are a function’s input(s). Arguments are
optional, as we saw with the Addition function, where no inputs were used. For many functions,
especially for functions that do math, arguments are usually necessary to ensure the reusability
of the function. For example, our Addition function only summed two hardcoded values. Unless
our PLC program needed to add 3 and 4 together each time the function was called, the function
serves no purpose. To make this function usable, we need to provide some inputs to make it more

generic and usable in different circumstances.

The first step in creating functions with arguments is declaring variables in the VAR_INPUT section
of the function file. For our modified Addition function, we are going to have the function take

two inputs, a and b. As such, we’re going to modify that section of code to match the following:

FUNCTION Addition : INT
VAR_INPUT
a : INT;
b : INT;
END_VAR
VAR
END_VAR

As can be seen, we have two variables labeled a and b. These variables will hold the values we
input into the function. For this example, we are going to keep the same addition logic that we

used before, so that logic should match the following:

Addition := a + b;

The key takeaway here is that no actual values are being assigned to any of the variables in the
function. In this case, all values are supplied when the function is called. To demonstrate this, we
are going to modify our code in the PLC_PRG file. The first thing we will do is modify the variable

list to match the following:

PROGRAM PLC_PRG
VAR
sum : INT;
inputl : INT;
input2 : INT;
END_VAR

Chapter 3 79

In this case, we still have our sum variable, which will hold the sum of the inputl and input2

variables, which will serve as our function inputs. To run the function, we use the following code:

sum := Addition(inputl, input2);

Notice that we have inputl and input2 separated by a comma in the parentheses. This is how
we supply the function with the arguments. In this case, input1 will be assigned to variable a in
the Addition function, and input2 will be assigned to variable b. For this technique of passing
in variables, the first argument is mapped to the first variable declared in the VAR_INPUT block,

and the second is mapped to the second declared variable.

To test the code, run the program and write the values 2 to inputl and 3 to input2. When the

code is executed, you should be met with Figure 3.6.

Hpression Type Yalue
@ sum INT 5
@ inputl INT 2
@ input? INT 3

Figure 3.6: Argument passing

Though this is a very common technique for passing arguments to a function, it is not the only
way. Depending on what you're trying to accomplish, it is sometimes better to explicitly state

which variables get which value. This technique is known as named parameters.

Named parameters

In computer science, the concept of named parameters allows developers to explicitly state which
variable gets which value. By using named parameters, we are not bound to the traditional one-
to-one mapping approach of argument assignment that we explored in the last example. Named
parameters allow us to assign a value to a specific variable by assigning it in the argument list. To
demonstrate this, create a function named Subtraction with a return type of INT. Once the file

is generated, add a and b variables to the VAR_INPUT list as in the following code block:

FUNCTION Subtraction : INT
VAR_INPUT
a : INT;
b : INT;
END_VAR
VAR
END_VAR

80 Functions: Making Code Modular and Maintainable

As with the Addition function, the logic for the Subtraction function is as follows:
Subtraction := a - b;

Once the function is set up, we can work on invoking the code in the PLC_PRG construct. Notice in

the second bullet, there are two different ways of passing arguments to the Subtraction function:

e Variables for function call: These variables will hold the values of the different subtrac-

tion calls:

PROGRAM PLC_PRG

VAR
diffl : INT;
diff2 : INT;
END_VAR

e Logic to invoke the function: The following code snippet represents two different ways

to pass arguments to the subtraction function:

diffl
diff2

Subtraction(3, 2);
Subtraction(b:=3, a:=2);

When this code is run, you will get an output similar to Figure 3.7.

Expression Type Value
& diff1 INT 1
$ diff2 INT -1

Figure 3.7: Different argument order

As can be seen, we passed variables to the function using different techniques and got two different
results. On the first line, we traditionally passed in the variables, and a got assigned 3 and b got
assigned 2. Using this technique, the difference is 1. In the second line, we explicitly stated that

b will be set to 3 and a to 2, which, in this case, negates the traditional order of the arguments:

diff2 := Subtraction(b:=3, a:=2);

In this code snippet, we are manually assigning values to the variables. When we use this meth-

odology, we can pass the arguments in any order we want.

Passing arguments, though common, can be very cumbersome. Suppose you had many arguments,
but for the most part, the values never changed. It would be very inefficient to have to pass those
values every time the function was called. Much like in many other languages, there is a solution

for this. This special technique of argument assignment is often referred to as default arguments.

Chapter 3 81

Default arguments

Default arguments are a way of pre-setting parameter values for a function. This technique allows
us to preset arguments that often won’t change but will give us the ability to set them if necessary.
Sometimes the term default initialization is used to describe the behavior of default arguments in
formal documentation. The two terms describe what are usually equated to as the same thing
in practice, with the only real difference occurring under the hood. At the surface level, default
initialization and default arguments are essentially the same thing in terms of everyday devel-
opment; that is, presetting function arguments. The term default arguments is more commonly
used in daily language across many programming contexts, and more generic documentation
exists that can be used as a resource. In practice, I strongly recommend using the term default

arguments due to its common usage.

I often get asked by my entry-level students why we should use default arguments. A common
usage is with arguments that do not change. If we have arguments that hardly change, itis often
better to simply assign them a default value. Default parameters provide an overridable value
for the function to use if a value is not explicitly assigned when the function is invoked. In other

words, a default value is not immutable and can change when necessary.

Now that we have some background information on default parameters, let’slook at an example
of this concept in action. For this example, let’s revisit our RPMs function. As it stands, we use a
hardcoded conversion constant of 1,000. For the most part, this is fine; however, for whatever
reason, suppose we need to use a different conversion value. If we decide that the value needs
to change, we can simply pass in a new value to override 1,000. This is a much more convenient
technique, as we will not be forced to constantly supply the same value to the function, which

is an easy vector for bugs.

The magic of default arguments resides in the VAR_INPUT section. You create a default input by
simply assigning a value in that block. With that being said, create a new project with a RPMs
function with the same set up we used before. The VAR_INPUT should be set to the following code
snippet, which will set the rpmsConversion variable to 1000 by default:

FUNCTION RPMs : INT

VAR_INPUT
rpmsInput : INT;
rpmsConversion : INT := 1000;
END_VAR
VAR

END_VAR

82 Functions: Making Code Modular and Maintainable

As can be seen in the code snippet, all we did was simply assign the value 1000 to the variable.
This means that this value will not necessarily have to have a value assigned to it when we invoke
the function.

For this example, we’re going to use the following logic for the function:

IF rpmsInput < 1 THEN
RETURN;
ELSE

RPMs := rpmsInput * rpmsConversion;
END_IF

To invoke this function, we’re going to use the following logic in the PLC_PRG file.

These are the variables that we will use to demonstrate the RPMs function:

PROGRAM PLC_PRG

VAR
convertedRpms : INT;
motorRpms : INT := 4;
END_VAR

The core logic for calling the function is as follows:

convertedRpms := RPMs(rpmsInput := motorRpms);

When the program is run, the following will be output:

@ convertedRpms INT 4000
$ motorRpms INT %

Figure 3.8: RPMs conversion output

As it stands, we will multiply the input by 1,000; however, for whatever reason, if we need to
multiply by 100, it is still possible to do so without changing any code. We can simply pass the
extra argument when we call the RPMs function in the PLC_PRG file. To demonstrate this, we can

simply modify the RPMs call in the PLC_PRG file in the following manner:

convertedRpms := RPMs(rpmsInput := motorRpms, rpmsConversion := 100);

Chapter 3 83

When this line of code is run, it will produce output similar to Figure 3.9.

@ convertedRpms INT 400
#® motorRpms INT 4

Figure 3.9: Overridden RPMs conversion

Default arguments/initialization is a very powerful conceptin PLC programming. As was demon-
strated in the preceding code example, default arguments are excellent to use when you have a
value that may only need to change sometimes. By simply giving an argument variable a value,
you can free yourself and other developers from needlessly passing in values that typically won’t
change. In turn, this means that your code will become more stable and, as such, will be easier
to maintain and modify in the long run. Now that we know about functions, return types, and

various forms of passing arguments, let’s explore calling functions from other functions!

Calling a function from a function!

As was touched on earlier, a function can call another function; in fact, it is quite common to
call a function from another function. Calling a function from another function is like the parts
of a car working together to transport you from point A to B. When leveraged correctly, calling
a function from another can drastically improve your code and allow you to simplify it. In this

section, we’re going to look at how this is done with an example.

Simplifying your functions with facades

Automation machinery often requires a series of predefined steps to turn on, do a task, or, in
many cases, even shut down. This can be further complicated when each predefined step requires
complex logic to operate. In cases such as these, there are typically two courses of action that
a programmer can take. The first is to use redundant code. Each time a complex process must
be executed, the developer can copy and paste the code into that function. However, based on
what we’ve seen so far, this is a very bad option. For example, if any part of the process must be
modified, you’ll need to ensure it’s changed across the program. This means that bugs are bound

to occur if any part of the complex operation needs to be changed.

The other option is to package all the complex logic into functions and use another function to call
these composites. This calling function is called a facade. The goal of this function is to hide the
complexity of a complex process. In all, the goal of this function is to provide a simple interface
for the programmer to call instead of having to remember the order and the support logic for a

complex operation to succeed.

84 Functions: Making Code Modular and Maintainable

For this example, suppose we have a welding bot. For the bot to start welding, we need to send
a ping signal to the bot and check if an old welding job is done before we can start a new one.
For this example, all we’re going to do is set a few variables to simulate this. To begin, create a

function named weld and implement the following variables:

FUNCTION weld : BOOL
VAR_INPUT
END_VAR
VAR

weldDone : BOOL;
END_VAR

In terms of the main logic for the function, implement the following:

weldDone := TRUE;

weld := weldDone;

When the program is executed, the weldDone variable will simulate the completion of a welding
job. In a real-life program, this function would contain complex logic that would control things

such as the necessary parts to execute the weld.

Once you have this function implemented, you can move on to implementing the next function,

which we will call sendStartUpSignal. This function will have the following variables and logic:

FUNCTION sendStartUpSignal : BOOL
VAR_INPUT
END_VAR
VAR
pingResult : BOOL;
END_VAR

The logic for the function is as follows:

pingResult := TRUE;
sendStartUpSignal := pingResult;

Finally, we’re going to create a function that is going to hide the startup complexity for the bot.

To do this, simply create a function called start and add the following statements:

FUNCTION start : BOOL
VAR_INPUT

END_VAR

VAR

Chapter 3 85

pingStatus : BOOL;

weldStatus : BOOL;

overallStatus : BOOL;
END_VAR

In this case, we have three variables: one holds the status of the welder, the other the status of
the ping, and, finally, an overall status that is dependent on the other two variables. If both the
ping and weld variables are TRUE, this function will send a TRUE value back to the code line that

called it; else, it will send a FALSE value.

The logic for this function can be implemented with the following:

pingStatus := sendStartUpSignal();

weldStatus weld();

IF pingStatus = TRUE AND weldStatus = TRUE THEN
TRUE;

overallStatus :
ELSE
overallStatus :

END_IF

FALSE;

start := overallStatus;

This is the complex logic that is meant to be hidden. Without this facade function, any time or
place we needed to kickstart the welding process we would have to copy and paste this code. As
can be seen, the code has several steps that could be easily mixed up or overlooked; however, with
this function, if it ever needs to be changed or reused, we only need to modify it in one place. Also,
if the process has to be used more than once, the function prevents us from having to implement

the logic in multiple places.

To use this function and kickstart the welding process, all we need to do is implement the fol-

lowing variable in the PLC_PRG file:

PROGRAM PLC_PRG
VAR

status : BOOL;
END_VAR

The core logic for kickstarting the weld process is the following line:

status := start();

86 Functions: Making Code Modular and Maintainable

When you have all the code implemented, run the program, and you should be met with the

output shown in Figure 3.10.

Expression Type Value
status BOOL

Figure 3.10: Facade output

The key point to remember is that the goal of a facade is to reduce the burden on the programmer.
If you see yourself with a complex series of processes that must be called multiple times in a de-
fined order, you may want to try to implement a facade function. In automation, these functions
can be used to great effect as they can greatly reduce the overall complexity of the codebase while
simultaneously keeping it nice and tidy. With facade functions out of the way, we can move on

to creating our final project.

Final project: Temperature unit converter

Often, as PLC programmers, we are asked to provide software that monitors temperatures. These
temperatures could be inside the housing of a control panel, the temperature of a part we are
fabricating, or anything of the like. It is quite common to need to be able to convert between

temperature units, especially when the program is deployed to places around the world.

Temperature converters are prime examples of functions as they will often need to be used multiple
times in a program. As such, we want these conversion calls to be able to be used with minimal
effort; that is, we don’t want to write the code multiple times. For our function, we are going to

create a state machine to trigger our conversion from one unit to another.
Our program will need to perform the following operations:

1. F->C

2. F->K
3. C
4. C -> K
5. K
6. K->C

Our state machine will have six states. Therefore, create a function called tempConverter with a

return type of REAL and match the code to the following snippets.

Chapter 3 87

These are the variables that will be used for the temperature conversion:

FUNCTION tempConverter : REAL

VAR_INPUT
state : INT;
temp : REAL;
END_VAR
VAR
END_VAR

Once you have these variables in place in the function file, add the following logic:

CASE state OF

1:
tempConverter := ((temp - 32) * 5) / 9;
2:
tempConverter := (((temp - 32) * 5) / 9) + 273.15;
Bk
tempConverter := ((temp * 9) / 5) + 32;
4:
tempConverter := temp + 273.15;
58
tempConverter := (((temp - 273.15) * 9) / 5) + 32;
6F
tempConverter := temp - 273.15;
E(SSE
RETURN;
END_CASE;

Once you have the function file squared away, modify the PLC_PRG file to match the following

variables:

PROGRAM PLC_PRG
VAR

88 Functions: Making Code Modular and Maintainable

convertedTemp : REAL;

state . INT;
temperature ¢ REAL;
END_VAR

Once you have the variables in place, you can call the conversion function with the following call:

convertedTemp := tempConverter(<state>, <temperature>);

For a simple test, we will convert 100°F to Celsius. To do this, we will input 1 for state and 100

for temperature. When we write the value, we will get the following output:

@ convertedTemp REAL 37.77778

$ state INT 1
% temperature REAL 100

Figure 3.11: Fahrenheit to Celsius conversion

As we can seg, it correctly converted Fahrenheit to Celsius. Now, you can input different values

and states to test the code.

Chapter challenge

A function such as tempConverter is very common in the real world. However, if you notice, the
name is not a verb. For this chapter challenge, figure out a better name for the function, and also

apply the one-sentence rule to determine whether the function is doing too much.

Atthis point, we have had an in-depth look at functions. As the book progresses, we will be using
functions and their cousins, known as methods, more and more. This chapter is a foundational
chapter for the rest of the book, so if you're not comfortable with the material, it is recommended
that you go back and re-read this chapter and play with some of the examples or create a few of

your own.

Summary

In this chapter, we explored functions, return types, arguments, facade functions, and more. The
goal of this chapter was to demonstrate how to modularize code. Moreover, this chapter was an
introduction to code organization. In general, if a program is to survive, it must be organized, and

to create an organized program, you need to make it as modular as possible.

Chapter 3 89

The key to along-lasting codebase is modularity, and one of the core ways we can modularize and
organize a program is by breaking it up into functions. Functions are the fundamental backbone
of any program; however, there are other, more sophisticated ways to create modular and more
organized code. In the next chapter, we’re going to take a look at a concept that can be almost

thought of as the big brother to functions, object-oriented programming!

Questions

Whatis a function?

sy

What are default arguments?

What are default arguments sometimes referred to as in formal documentation?
What are named parameters?

In which order are arguments received in a function?

What goes into a function?

What s a return type?

Can the INT return type be used with a variable of type REAL?

Y0 o N ook W N

What s a facade function?
10. Why do we want modular code?

11. Can you call a function from another function?

Further reading

. CODESYS Functions: https://content.helpme-codesys.com/en/CODESYS%20
Development%20System/_cds_obj_function.html

Get This Book’s PDF Version and
Exclusive Extras
m]

Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

https://content.helpme-codesys.com/en/CODESYS%20Development%20System/_cds_obj_function.html
https://content.helpme-codesys.com/en/CODESYS%20Development%20System/_cds_obj_function.html
packtpub.com/unlock

Object-Oriented Programming:
Reducing, Reusing, and
Recycling Code

As we saw in the previous chapter, the key to a healthy codebase is organization and no redun-
dant code. Though functions are one vital way of reducing, organizing, and reusing code, there

is a much more effective way. This methodology is called object-oriented programming (OOP).

OOP is the backbone of most modern programming languages. In fact, to effectively use most
modern languages such as Java, C++, C#, Python, and many others, a solid understanding of OOP
is not only vital but mandatory. OOP is, for the most part, novel to PLC programming. Many PLC

programmers are not fully aware OOP is supported, much less how to use it.

OOP offers many capabilities that, when leveraged correctly, can create very organized codebases
thathave no redundant code. There is alot to understand about OOP and how to properly leverage
it. This chapter is going to introduce the concept by exploring the following topics:

e Whatis OOP?

e Why OOP should be used

e Exploring function blocks

e Exploring methods

e Getting to know objects

e Function block naming

e Getting to know getters and setters

92 Object-Oriented Programming: Reducing, Reusing, and Recycling Code

e Understanding recursion and the THIS keyword

e Usingfunction blocksin Ladder Logic (or using its more formal name, Ladder Diagrams)

To wrap things up, we’re going to create a custom function block that will serve as a unit converter.

Technical requirements

The source code for this chapter can be found at the following URL: https://github.com/
PacktPublishing/Mastering-PLC-Programming-Second-Edition/tree/main/Chapter%204.

The key to learning OOP is to practice, practice, and practice. It is strongly recommended that you
follow along with the material in the book; that is, type it out by hand. However, if you run into
technical issues, you can download the code from the GitHub repository to explore it. It is also

highly recommended that you try to expand the functionality of the code in the URL.

What is OOP?

The first step in mastering OOP is understanding what itis. The best analogy, in my opinion, that
one can use to conceptualize OOP is digital blueprints. If you think about a car, a company may
produce thousands of cars a day based on a single set of blueprints. Each car might be alittle dif-
ferent; for example, one car might be green while another red, or one car may have a cloth interior

while another has a leather. Regardless, each car model will generally be the same.

OOP is a paradigm. In other words, OOP is a way to structure and conceptualize your codebases.
There are many programming paradigms out there; however, OOP is by far the most popular.
Almost all modern programming systems support the paradigm, and it is widely used across

most applications in most industries.

When it comes to PLC programming, we can apply the same concepts that govern many traditional
programs. If you’ve ever programmed in a language such as C++, C#, Java, Python, or any other
modern language, you might be familiar with what’s called a class. In terms of PLC programming,
the closest structure that we have to a class is what’s known as a function block. A function block
can be thought of as a digital blueprint for something. For example, you can create a function

block to model a power supply, a motor, or even a car.

Function blocks are not the same as the functions we saw in the last chapter. A function block is
a special POU that has many special properties and can supportits own self-contained functions
and variables. Not only that, but these POUs also have the ability to use code from other function
blocks in very special ways. We're going to explore function blocks in detail in the Exploring func-

tion blocks section; however, for now, just know that function blocks are the backbone of OOP for

https://github.com/PacktPublishing/Mastering-PLC-Programming-Second-Edition/tree/main/Chapter%204
https://github.com/PacktPublishing/Mastering-PLC-Programming-Second-Edition/tree/main/Chapter%204

Chapter 4 93

PLCs. To expand our understanding of OOP, we need to switch our attention to understanding

what OOP is not!

What OOP is not

OOP is a complete mystery to many PLC programmers. This is mostly due to its novelty. OOP is
not supported by every PLC brand, and the extent to which itis supported will often vary greatly
between brands that do. Typically, OOP is only fully supported by computer-based PLCs such
as Beckhoff PLCs. However, with the rise of new technologies that support Industry 4.0, Al, and
other cutting-edge technologies, OOP is going to be integrated into more PLC systems to support

modern trends.

First and foremost, OOP is not breaking up your program into multiple POU files. Many PLC de-
velopers who are not familiar with the paradigm simply assume that OOP is simply splitting logic
across multiple POUs. This misconception could not be farther from the truth. Fundamentally, it

is a way to organize and reduce redundant code by modeling real world objects.

Another misconception among automation programmers is that OOP is a special language; this
is also not true. As stated before, OOP is a programming paradigm. It is a way of structuring a
program. Many different languages support OOP and its features. In other words, it is language
agnostic, meaning that the principles that govern it are not unique to any given language, and

in the case of PLCs any specific brand or programming system.

The final misconception that we’re going to explore is that OOP can convolute code. In all fairness,
this misconception is only partially false. The reason why it can convolute code has nothing to do
with the paradigm itself; instead, it has to do with the skill of the programmer. To properly use
the OOP paradigm, a developer must thoroughly understand the rules that govern it and how to
properly implement them. As we will explore in the next chapter, OOP works best when a series
of relationships are followed. When the rules and relationships are not properly followed using

OOP, features can and often will render a codebase unmaintainable.

When leveraged correctly, OOP can greatly improve a codebase. It can keep codebases clean and

healthy. In the next section, we’re going to take a deep dive into why we should use the paradigm.

Why OOP should be used

OOP is the cornerstone of modern programming. Almost all modern programs utilize it in some
way. In fact, for almost all traditional modern programming jobs, a solid foundation in OOP is
mandatory. In short, it is the future of all software projects, and automation codebases are no

different.

94 Object-Oriented Programming: Reducing, Reusing, and Recycling Code

The benefits of OOP

When it comes to OOP, there are technical and non-technical benefits. By that, there are benefits
that are directly related to writing code and higher-level benefits that are more concerned with
code maintenance and productivity. To begin this exploration, we’re going to first look at the

non-technical benefits:

e Reusability: When implemented properly, OOP allows for code to be implemented in one
location with the ability to be used across multiple projects. As a result, it allows developers

to write and test one code module that can be used almost anywhere.

e Code maintenance: OOP promotes code organization by organizing code into what can
be thought of as digital blueprints. This means if you have a module in the form of a
function block that handles, for example, a robotic claw, and an issue arises, it can be

easily located and fixed.

e Reduces redundant code: This ties into reusability and code maintenance. When im-
plemented properly with the correct relationships, OOP can eliminate redundant code
because it promotes code reusability. This means that codebases can be smaller and more

manageable.

¢ Reduces the storage usage on the controller: Smaller codebases can translate into less
required storage for the codebase. This means that, though relatively minor, the overall
footprint of the codebase will be reduced. In turn, the smaller footprint equates to more
space on the device for things such as logging, more sophisticated HMIs (assuming the

HMI is housed on the control unit), and many other things as well.

e Leverages design: OOP allows developers to implement more sophisticated program
designs. As stated before, itis governed by a set of rules that, when implemented properly,
can allow for well-crafted programs that are smaller and cleaner than their non-OOP

counterparts.

e Increases productivity: Object-oriented code generally produces an overall better-quality
product faster and cheaper than a non-object-oriented software system. When designed
properly, the modules can be ported to another project (as will be explored later), bugs

will be easier to find and fix, and code is less likely to be accidentally broken.

To appreciate the benefits that directly relate to writing code, we need to explore some of the
technical benefits of the paradigm. To do this, we are going to explore what are commonly called
the four pillars of OOP!

Chapter 4 95

The four pillars: a preview

In terms of writing code, there are four main technical benefits to using OOP, that are as follows:

e Encapsulation
e Abstraction
e Inheritance

e Polymorphism

These four principles have a lot of complexity behind them. For now, it is only necessary to be
aware of what the four pillars are, as we will focus on them in the next chapter. For this chapter,
we are not going to focus on the pillars in practice. For now, we will use public access specifiers,

which will allow us to access function block attributes from anywhere in the program.

In some OOP contexts, the word “attribute” is often used in a stricter sense and is

used to refer to a variable or field of a class or function block. In IEC 61131-3, attributes

\/V' are keywords or properties that modify programming elements (for example, to

control storage or behavior), particularly variables. These terms are often confusing
for beginners. This book will use the word “attribute” in a more general sense to

refer to any component of a function block.

In all, if a PLC system does support the IEC 61131-3 standard for OOP, there is no reason not to
adoptit. Even if there is an initial investment to get a team up to date with OOP, it will ultimately
be worth it in the long run. Without implementing OOP, an organization will lose the ability to

easily modify, debug, produce, and, ultimately, reuse code.

As we will explore, the function block POU is the backbone of OOP for many PLC systems; however,
we have not explored what function blocks are in any real depth. Therefore, the next section will

explore the intricacies of function blocks!

Exploring function blocks

A function block is, for all intents and purposes, a class in any other programming language.
Chances are, if you’re reading this book, you've programmed a PLC at some point, and you’ve
probably used a function block at some point as well. Considering the name function block, it is
forgivable to confuse a function block with a standard function; however, a function block is
radically different from a function. Many inexperienced PLC programmers will often confuse a
function with a function block. However, it is important to understand that a function is simply
a callable block of code that will carry out a specific task. In contrast, a function block is a blue-

print for something.

96 Object-Oriented Programming: Reducing, Reusing, and Recycling Code

A simple way to think of a function block is as a container. Function blocks hold programming

code such as unique functions, called methods, and variables.

Note

\/"/ Amethod is a function thatlives in a function block. Methods will be explored deeper
in the Exploring methods section. However, for now, it is only important to know that

amethod is a special type of function.

The first step in understanding a function block is learning to declare and use one.

Function blocks are generated via the same wizard we used to create a function. If you are un-
familiar with that process, see Chapter 3. To create a function block, right-click on Application,
then navigate to Add Object, select POU, check Function block, and set the fields to match the

following screenshot:

Iﬂ I Create a new POU (Program Organization Unit)

Name
Calculator

Type
() Program
© Function block
|_|Extends
|_| Implements
() Final [] Abstract

Accessspecifier
PUBLIC
Method implementation language

() Function

Retumn type

Implementation language
Structured Text (ST)

| .‘ldd_| Cancel

Figure 4.1: Calculator function block

Chapter 4 97

The function block we are creating is going to be a Calculator function block. For this example,
all we’re going to do is perform a basic hookup for the function block to explore its basic function-
ality. That is, we’re only going to implement a line that says, Hello world. However, be sure to
follow all the steps because after we get the function block hooked up, we’re going to add more

functionality to it so it can actually be a calculator.

Once you create the function block, you should be met with a POU file in the project tree called

Calculator. In the file, you should see the following code in the variable block:

FUNCTION_BLOCK PUBLIC Calculator
VAR_INPUT
END_VAR

VAR_OUTPUT
END_VAR

VAR
END_VAR

The logic in the file that was generated when you created the function block is analogous to a
constructor method in a language such as C++, C#, or Java when invoked. However, unlike a tra-
ditional constructor, the code in the function block will run only when you explicitly call it. It’s
not uncommon to use the logic in the function block to initialize things such as setting values,
turning things on, and so on, to get the overall function block ready to use. Conceptually, the only
real difference is that a function block’s code will need to be invoked, while a true constructor is
a class method that runs when the class is initialized. For the sake of practicality, I like to think
of the code in a function block as constructor logic. As such, I will normally architect the base

function block’s logic to do tasks that would be found in a traditional constructor.

Depending on what you’re working on, it is not uncommon to have only a function block with
no methods. However, it is typically a good idea to break up the functionality of a function block

into methods to help other developers and your future self better understand and use it.

To demonstrate the initialization, first, match the code in your function block to the following

snippet:

FUNCTION_BLOCK PUBLIC Calculator
VAR_INPUT
END_VAR

98 Object-Oriented Programming: Reducing, Reusing, and Recycling Code

VAR_OUTPUT
msg : STRING(20);
END_VAR

VAR
END_VAR

Once you have completed this, insert the following code:
msg := 'Hello world!';

If you have any experience with OOP, you will know that we now need to create a variable to

reference the class—or in this case, the function block.

The reference variable is declared in the variable block of the PLC_PRG file, like so:

PROGRAM PLC_PRG
VAR

cl : Calculator;
END_VAR

In this case, the c1 variable is an object reference, or in IEC 61131-3 lingo, an instance of the
Calculator function block. In other words, c1 is an object that is based on the blueprint provided
by Calculator. We're going to explore the concept of objects in the next section, but for now, the

code is set up in such a way that only one calculator is produced based on the blueprint.

Now, we have essentially created a calculator. To use it and have it display our message, all you

need to do is implement the following code in the PLC_PRG file:

cl();

When we run the code, we should get the following output:

Expression Type Value
= #cl Calculator
"% msg STRING(20) Hello world!'

Figure 4.2: Calculator function block output

Essentially, what Figure 4.2 represents is a function block being run. At first glance, this looks
like we called a function in a very convoluted way. In all fairness, for this example, we did. An

application such as this is almost a waste of a function block. In other words, it’s overkill to use a

Chapter 4 99

function block in this manner; it would typically be more appropriate to use a standard function.

To get the most out of a function block, we need to add methods to it to give it unique functionality!

Exploring methods

To get the most out of a function block, you should add methods to it. Methods are a special type
of function that are declared in and must be invoked through a function block. Where a standard
method is globally accessible in a PLC program, a method can only be invoked in a file that refer-
ences the function block, as we saw in the previous section. Another unique feature of a method is
that when inheritance is invoked, function blocks can share certain methods with other function
blocks. To start exploring methods, we’re going to add four methods to the Calculator function

block we created in the last example.

Adding methods

Adding a method is relatively simple. To add a method, all you have to do is right-click the
Calculator function block, hover over Add Object, and click Method..., similar to what is shown

in Figure 4.3.

+ I} Application
m Library Manager
\E] calculator (FB)
[F] picPre(¥ Cut
= |54 Task Confi{ By Copy

= Q M_?IHTE Paste
@ PL X Delete .
Browse g
Refactoring d

Properties...

] Add Object » |51 Action.. mest

) Add Folder... B4 Method...

(7" Edit Object 83 Property... u
Edit Object With.., @} Transition...

Figure 4.3: Adding a method

100 Object-Oriented Programming: Reducing, Reusing, and Recycling Code

When you follow these steps, you will be met with a wizard that will generate a method similar
to what is shown in Figure 4.4. For this particular method, we’re going to name it addNumbers,

set the Return type value to REAL, and the Access specifier value to PUBLIC:

Add Method x

W

Create a new method

Mame

|addNumbers ~

Return type
REAL

Implementation language
Structured Text (ST) w

Accessspecifier
PUBLIC i

| Abstract

Add Cancel

Figure 4.4: Method wizard

It is very important that your inputs match those in Figure 4.4. There are a couple of fields that
need to be explained. First, the access specifier ties in with the concepts of abstraction and en-
capsulation. There are two main access specifiers that you will use on a daily basis: private and
public. Itis very important that you select the right one for your method. A public access specifier
will allow any file that references the function block to use that method. On the other hand, a
private access specifier will only allow a method to be accessed from within the function block
itself. For example, you will only be able to call a private method from a method that lives in the

same function block or from logic in the function block itself.

Chapter 4 101

The second gotchais the language selection. Most systems, especially CODESYS, will allow you to
implement your methods in different IEC languages. For example, you can implement a method
in Structured Text (ST), Ladder Diagram (LD), or any of the other languages. Though you can
mix and match languages, it is typically a good idea to implement the whole function block in

a single language.

Challenge
Now thatyou have created the addNumbers method, create methods called subNumbers, mulNumbers,
and divNumbers with the same parameters as addNumbers. These will be the four functions of the

calculator. When you are done, your function block should look like the one shown in Figure 4.5.

= Calculator (FB)
E?ﬂ gddMumbers
E.} divMumbers
E.} mulurnbers
E,} subMumbers

Figure 4.5: Function block methods

After you complete the challenge, you can start implementing the code. In each of the methods,

you should see a variable block as in the following code snippet:

METHOD PUBLIC addNumbers : REAL
VAR_INPUT
END_VAR

Much like traditional functions, a method can take arguments. The arguments will behave in the
same manner as they would with a traditional function. For this example, the methods will take
two arguments, which we will call vall and val2. These inputs will be the specific numbers that

the methods will perform the mathematical operation on.

Similar to how we used inputs with functions, we will declare these variables in the VAR_INPUT
block. With that being said, the variable block of each of the methods should resemble the fol-

lowing:
VAR_INPUT
vall : REAL;
val2 : REAL;

END_VAR

102 Object-Oriented Programming: Reducing, Reusing, and Recycling Code

Note

\/V When working with mathematical operations, ensure that you pay attention to the
data types. For this example, we’re going to use REAL as that type is robust enough

to handle any calculation.

Once you have all the input variables set up, you can move on to implementing the logic for the

methods. To do this, add the following logic to each of the methods.
Add this for the addNumbers method:

addNumbers := vall + val2;

Add this for the subNumbers method:

subNumbers := vall - val2;

Add this for the mulNumbers method:

mulNumbers := vall * val2;

Add this for the divNumbers method:

IF val2 <> © THEN

divNumbers := vall / val2;
ELSE
divNumbers := 0;
END_IF
Note

\/V Notice that the divNumbers method has a little extra logic compared to the other
methods. This is to ensure that if a division-by-zero situation occurs, the code will

not crash. Essentially, the method will return 0 if the bottom number is input as 0.

Once you have the method code assembled, you can move on to preparing the PLC_PRGfile. These

are the variables that will be needed for the Calculator program:

PROGRAM PLC_PRG
VAR
calculator : Calculator;

Chapter 4 103

sum : REAL;

dif : REAL;

pro . REAL;

rat . REAL;
END_VAR

Here, the calculate variableis a reference to the Calculator function block. The other variables

that are of the REAL type are the holders for the return values.

The following PLC_PRG file code will invoke the methods:

sum := calculator.addNumbers(1l, 3);
dif := calculator.subNumbers(3, 2);
pro := calculator.mulNumbers(5, 5);

rat := calculator.divNumbers(8, 2);

Essentially, we use the same syntax as we did when we were accessing variable values from the

core function block. We also pass arguments the same way we did when we were calling functions.

Once you have the PLC_PRGfile set up and you run the code, you should be met with the following

output:
Expression Type Value
+ @ calculator Calculator

@ sum REAL 4

& dif REAL

@ pro REAL 25

@ rat REAL 4

Figure 4.6: Calculator output

As can be seen, all the methods were correctly called and are computing the correct values.

Getting to know objects

So far, we have demonstrated how to create function blocks and how to add methods to them.
However, in terms of actual implementation, we haven’t fully explored how to leverage these
to do anything productive. A key use case for function blocks is reducing code for things that
are similar. In other words, suppose we have a blueprint for a car. From that blueprint, we can
create an unlimited number of vehicles from that single set of prints; however, each vehicle will

be unique regarding certain values such as car color, VIN, or gas mileage.

104 Object-Oriented Programming: Reducing, Reusing, and Recycling Code

In a more technical sense, an object is an instance of a function block. That is, each object you
create will consist of all the attributes of the function block, such as the variables and methods, but
they are independent of each other. For example, if a function block has a variable called MPGin it
and has two objects that derive from it, one object can have an MPG value of 31 while another will
have avalue of 22. Essentially, an objectis a copy of all the function block’s code. This means that
although the objects are copies of one another, they will operate and evolve separately throughout

the program’s run cycle. To fully grasp this concept, let’s look at an example!

Suppose we’re working on a car wash. A car wash will have many different motors that each
do their own thing to clean a car. Depending on the way the car wash is designed, it will most
likely use the same motor type throughout the system. For this example, assume our car wash

is composed of three motors that can be put into three modes that we’ll call on, off, and pause.

For this project, create a function block called motors and add three functions named motoroOn,
motorOff, and motorPause to it. For all three methods, set the access specifier to PUBLIC, and
though it technically won’t matter for this example, set the return type to WSTRING. When you're
finished, your function block should look like Figure 4.7.

= motors (FB)
ﬁ,} metorOff
E} motaron
ﬁ,} motorPause

Figure 4.7: The motors function block

The motors function block will have what other OOP-based programming languages call a
class-level variable in it. This is a variable that will be accessible throughout the function block.
The code for the motors function block POU file should look like the following:

FUNCTION_BLOCK motors
VAR_INPUT
END_VAR

VAR_OUTPUT
state : WSTRING;
END_VAR

VAR
END_VAR

Chapter 4 105

The code for the motoron method should only consist of the following:

state := "on";

The code for the motoroff and motorPause methods should be the following, respectively:
state := "off";
state := "pause";
The true magic for this program will be in the PLC_PRG file. The code for this file should match
the following:

PROGRAM PLC_PRG

VAR
brushMotor : motors;
wheelShiner : motors;
roller : motors;
brushState : WSTRING;
rollerState : WSTRING;
wheelShinerState : WSTRING;

END_VAR

In this code, brushMotor, wheelShiner, and roller are the objects. They are instances of the
motors function block and are sometimes referred to as reference variables in traditional OOP
terminology. They have all the attributes that are in the motors function block, but as stated be-
fore, they will operate independently. This will be demonstrated with the state variables which

will simply hold the state for the individual objects.

The main logic for this program will be as follows:

brushMotor.motoron();
brushState := brushMotor.state;

wheelShiner.motorPause();

wheelShinerState := wheelShiner.state;

roller.motorOff();

rollerState := roller.state;

106 Object-Oriented Programming: Reducing, Reusing, and Recycling Code

Once the code is implemented, your output should resemble Figure 4.8.

Device Application.PLC_PRG

Expression Type Value

+ @ brushMotor motors

+ @ wheelShiner motors

+ @ roller motors
brushState WSTRING on”
rollerState WSTRING “off
wheelShinerState WSTRING "pause”

Figure 4.8: Motor objects

If you have never programmed in OOP before, this code may not make a lot of sense. For instance,
why does state have three unique values all at once? In short, objects such as roller,wheelShiner,
and brushMotor all get a copy of the function block and its attributes. This means that each object
variable will get its own state variable, its own pause method, and so on. Therefore, each one of
these objects can mutate the state variable without affecting the other objects! Function blocks
can easily become a mess. The key to a well-crafted function block starts with a solid name. In
the next section, we’re going to explore function block naming and how it can ensure you have

a quality function block.

Function block naming

The key to writing a quality function is understanding that it represents a thing. This is vital to
understand for programmers. Many inexperienced programmers will often use function blocks
or classes in general-purpose programming languages as dumping grounds for random methods
and variables. This is a terrible practice, as a function block is supposed to model a thing. If you
think back to school, you may remember that a noun represents a thing. This means that, much

like a struct, a function block should also use a noun as a name.

As we saw with structs, a quality name can easily lay the foundation of a quality function block.
A function block should represent one thing and one thing only. Therefore, having a quality
noun name will enforce that principle. If you think about it, if you have a function block called
television, adding methods to support the operations of a car won’t make any logical sense.
Also, much like with structs, you want to avoid using a verb as a name. Again, if you think back
to school, a verb is an action word; it does not describe a thing, so it won’t make logical sense to

name a function block a verb since it’s supposed to represent a thing.

Chapter 4 107

The following are some basic tips to help you pick an appropriate name for a function block:

e Keep the name short and to the point
e Ensure that the name is a noun
e Avoid using verbs

e Avoid using ambiguous names that can be interpreted differently by different people,

especially if your team natively speaks other languages or stems from different cultures

More on function block best practices will be explored in Chapter 6; however, now that we have
some background on using function blocks and methods, we can move on to using a special

method type known as getters and setters.

Getting to know getters and setters

Until this point, all of our methods and variables have been set to PUBLIC. This means that any
file that has a reference to the function block can use its attributes. Believe it or not, this is con-
sidered bad programming. When you’re using the OOP paradigm, you want only the minimum

attributes exposed to any file other than the files in the function block.

The golden rule of OOP is that if a programmer does not need to use an attribute, they should
not be able to see it. This is the core of encapsulation and abstraction. However, there is a caveat.
Sometimes we need to use the encapsulated variables. So, how can we use a variable that should

not be accessible? The answer is properties.

A property is broken into two components that are placed in two different files. One file is called
get, and the other is called set. Properties help you keep data encapsulated (thatis, hidden). For

example, consider the following code for our motors function block:

FUNCTION_BLOCK motors
VAR_INPUT

state : WSTRING;
END_VAR

VAR_OUTPUT
END_VAR

VAR
motorSpeed : REAL := 1000;
END_VAR

108 Object-Oriented Programming: Reducing, Reusing, and Recycling Code

In this case, motorSpeed would be a function block-wide configuration. If you try to access this

variable and change it from another file, as in Figure 4.9, you will get an error.

-

ml.motorSpeed := ’

° Errors occured during code generation. See message list.

0K

Figure 4.9: Error message

Essentially, this message is saying that you cannot directly access the function block variable
because it is not an input variable. However, we can set the value with a method. Though you
can (and many times, will) mutate these variables with a PUBLIC method, the optimal way of

mutating the value is with the Get and Set values of a property.

The overall goal for a property is to ensure that the program is reading or writing to a value on
your terms. Properties allow us to set validation logic to ensure that we’re setting a valid value
to the target variable or ensure that we can read the value under the correct circumstances. The

first step in this process is setting up a property.

Getting to know properties

Adding a property is a lot like adding a method, with the only exception being that you will select
Property... instead of Method.... To follow along, add the property in Figure 4.10 to the motors

function block:

Chapter 4 109

Create a new property

Name
épropl

Return type
REAL

Implementation language
Structured Text (ST)

Accessspecifier
PUBLIC v I:I Abstract

[Add | Cancel

Figure 4.10: Property creation wizard

For this example, we’re going to name the property Propl and give it a return type of REAL. As
usual with this chapter, we will give the property an Access specifier value of PUBLIC. Once you
click the Add button, you should see a property component generated with two methods, similar

to what is seen in Figure 4.11:

Figure 4.11: Property-generated getter and setter

Now that we have our property in place, let’s use it!

110 Object-Oriented Programming: Reducing, Reusing, and Recycling Code

Using the Get method

The easiest of the two types of methods to use is the Get method. Though it can support logic, it
is very common for it to just read a value, which is why it is typically the easiest to use. For this
example, we're going to read the motorSpeed variable in the motors function block. To do this,

all we need to do is implement the following line in the Get method:

Propl := motorSpeed;

Once you do that, you can implement the following variables in the PLC_PRG file:

PROGRAM PLC_PRG

VAR
ml : motors;
speed : REAL;
END_VAR

The core logic for the example is as follows:

speed := ml.Propil;

When this example is executed, you should see the same output as in Figure 4.12.

Device.Application.PLC_PRG

Expression Type Value
+ # ml motors
% speed REAL 1000

Figure 4.12: Getter output

As can be seen, the program reads the motorSpeed variable and assigns it to the speed variable.
In other words, we bypassed the error message in Figure 4.9. Now that we can read a value, we

need to learn how to set a value.

Using the Set method

The Set method typically takes more complex logic for validation purposes. For example, if your
device is using a motor and the motor has a maximum speed of 2,000 RPMs, you don’t want to
accidentally set the motor speed to 6000. This is where the validation logic comes into play. To

explore this, implement the following logic in the Set method:

motorSpeed := Propl;

Chapter 4 m

IF motorSpeed > 2000 THEN
motorSpeed := 1111;
END_IF

Propl := motorSpeed;

In this case, we’re going to read in a value and then perform a check on it. If the value we set is

greater than 2000, we’re going to default the motor speed to 1111.

To use this code, we need to modify the PLC_PRG POU to have the following variables:

PROGRAM PLC_PRG

VAR
ml : motors;
speed : REAL;
END_VAR

The logic for this example should be as follows:

ml.Propl := 6000;
speed := ml.Propl;

When the code is ran you should be met with Figure 4.13:

Expression Type Value
+ @ omi motors
@ speed REAL 1111

Figure 4.13: Getter output

Whether you're using the getter or the setter will depend on which side the property is being
invoked on. If the property reference is on the left of : =, it will invoke the setter method, and if it

is on the right, it will invoke the getter.

The rules of properties

To properly leverage properties, you need to follow a few rules:

e Responsibility: When it comes to a property, it is important to limit what it can read or
write to. More specifically, a property should only read or write to a single variable. If you
have a property that is reading or writing to more than one function block variable, you
should create another property to interact with that variable. In other words, you can

have as many properties as you need!

112 Object-Oriented Programming: Reducing, Reusing, and Recycling Code

e Use responsibly: A major objective of OOP is to hide attributes such as methods and
variables whenever you can. In other words, you should only expose attributes that are
needed for the function block to work properly. This means that you do not want to cre-
ate a property for every function block variable. In fact, it is best to only create a property
for a variable that absolutely has to be interacted with. In short, these are values such as

configuration values (for example, motor speeds, temperature ranges, and so on).

e Naming: Since a property should only manipulate a single variable, itis best to include the
name of that variable in the property. Our example did not follow this rule; however, for

production code, this is vital as it will make troubleshooting and modifications much easier.

As stated earlier in this section, setters and getters are simply special methods and can have
complex logic to properly vet values that are being assigned to a variable. The past getter and
setter examples are simply the bare bones of how to use them. It is recommended that you play
around with getters and setters. Now that getter and setter properties have been explored, it is

time to move on to another concept, known as recursion.

Understanding recursion and the THIS keyword

Recursion is a looping concept that isn’t used much in today’s world. However, it is a concept
that often pops up in interviews and is something that all developers should understand. Simply
put, recursion is where a method calls itself to solve a smaller part of a problem. Recursion is a
valid concept that is important to know; however, for many applications, some type of loop will

be more appropriate.

If you do opt to use recursion, exercise great caution. Recursion is generally considered re-
source-heavy, and in the automation world, where many PLCs have traditionally limited com-
puting resources, it can become a heavy burden on the PLC. Recursion is also somewhat dangerous,
as it is easy to create what is known as an infinite recursive loop, which is a loop that will call
itself forever. Many modern compilers do check for this and will usually throw a compile error

before the code is run. However, you should be aware of this and need to look out for the issue.

The THIS keyword

To understand recursion, you must first understand the THIS keyword. The CODESYS documen-
tation states that the THIS keyword is a function block pointer to its own function block instance.
In other words, THIS is a keyword for a function block pointer that points to itself. The general
syntax for the THIS keyword is as follows:

THIS~.method()

Chapter 4 13

Recursion in action
To demonstrate recursion, let’simplement a very common recursive function that calculates the
factorial of a number. To do this, add a new method to the Calculator function block, name it
factorial, and give it the return type of INT:

METHOD factorial : INT

VAR_INPUT

X : INT;

END_VAR

This logic will calculate the factorial:

IF x <= 1 THEN

factorial := 1;
ELSE

factorial := x * THIS*.factorial(x - 1);
END_IF

The line in the IF statementis what calls the method. The method takes an argument by default,
called x. When the method is called, itis supplied with an initial value. That value has 1 subtracted
during each iteration, and the value is multiplied by the current value of x. For example, if the

initial value supplied is 4, the method will compute the following: 4B30281=24.

To demonstrate the code in action, modify the PLC_PRG file to match the following:

PROGRAM PLC_PRG

VAR

calculator : Calculator;

sum ¢ REAL;

dif : REAL;

pro ¢ REAL;

rat : REAL;

fac : INT;
END_VAR

In the case of the variables, all we did was add fac:

sum := calculator.AddNumbers(1l, 3);
dif := calculator.SubNumbers(3, 2);
pro := calculator.MulNumbers(5, 5);
rat := calculator.DivNumbers(8, 2);

fac := calculator.Factorial(4);

114 Object-Oriented Programming: Reducing, Reusing, and Recycling Code

When the code is run, you should see the following output:

Expression Type Value
+ @ calculator Calculator
@ sum REAL 4
@ dif REAL 1
@ pro REAL 25
@ rat REAL
i@ fac INT 24 I

Figure 4.14: The factorial output
As can be seen, fac is showing 24, which means the factorial method works!

Atthis point, you should have a decent understanding of methods and function blocks. Methods

and function blocks are the backbone of any well-written object-oriented program.

It is no secret that LL is a very common PLC programming language. A logical question is, can
we integrate ST and, more importantly, these techniques with LL? The answer to this question

is aresounding yes! In the next section, we’re going to explore how to integrate ST code with LL.

Using function blocks in LL

It’s no secret that LL still rules the automation world; however, ST shines for modern, complex
applications. Regardless, for many applications, the simplicity of LL is much preferred. So, for
certain applications, it would be ideal to be able to mix the programming languages. Luckily,
many IEC 61131-3-based systems accommodate this with the use of function blocks. Function
blocks implemented in one of the IEC 61131-3 programming languages can typically be utilized
in another. For example, if we write a function block in ST, we can use it in LL or any of the other

IEC languages.

Note

V4 Whether or not you are allowed to implement a function block in another program-
\E/‘ ming language will depend on the programming system that you are using. Many
modern systems will support the mix-and-match approach; however, it’s important

to be mindful of the limitations of your programming environment.

To grasp this concept, let’s explore an example!

Chapter 4 115

Exploring the power of ST in LL

To explore how ST can be used to power an LL program, let’s create a new project and set the
language to Ladder Diagram. This will allow us to implement the main PLC program in LL as
opposed to ST. After you do that, you need to create a function block named Calculator and
set the language to Structured Text. Once you create the function block, add a method called

add_nums to it. When you’re done, your function block should resemble Figure 4.15.

= Calculator (FB)
ﬁ,} add_nums

Figure 4.15: Calculator function block

The method’s variable code section should resemble the following:

METHOD PUBLIC add_nums : REAL
VAR_INPUT

a : REAL;

b : REAL;
END_VAR

The logic should match the following:
add_nums := a + b;

Once you complete these steps and implement the code, navigate to the PLC_PRG file, and add a
Box with EN/ENO control from the toolbox as in Figure 4.16.

ToolBox

- General
[Network
FF Box
IEF Boxwith ENJENO |
=uak Assignment
= Jump
<dreT Return
%] Input
= Branch
Tl Execute

+ Boolean Operators

+ Math Operators
+ Other Operators
+ Function Blocks
+ Ladder Elements
+ POUs

Figure 4.16: Toolbox

116 Object-Oriented Programming: Reducing, Reusing, and Recycling Code

To utilize the method, implement the following variables in the PLC_PRG file:

PROGRAM PLC_PRG

VAR
enl : BOOL := TRUE;
X : REAL := 2;
y : REAL := 3;
sum : REAL;
C : Calculator;
END_VAR

In this case, enl is a variable that will enable the function block. The x and y variables are the
values that will be added together, sum will hold the sum of the two numbers, and finally, c is a

reference to the Calculator function block.

Once you have the variables in place, you can move on to adding the method to the PLC program.
To do this, simply select the Box with EN/ENO control and drag it over to the logic section of the
PLC_PRG POU file. Once you add the method, assign the variables to the box so thatit resembles

Figure 4.17.
i N
L c
enl Calculator.add nums
01 EN ENO-
x—la add_nums — Sum
¥ —b

Figure 4.17: LL PLC program

When the program is executed, you should be met with Figure 4.18.

Device. Application.PLC_PRG

Expression Type Value
® ent BOOL
P x REAL 2
Py REAL 3
$ sum REAL 5

@ C Calculator

Figure 4.18: LL program output

Chapter 4 117

As can be seen, the program produces the sum of the two numbers and stores it in the sumvariable.

Challenge

Add a method that can multiply, divide, and subtract two numbers in ST and create an LL pro-
gram that can use each of the functions. Once you complete the challenge, you can move on to

the final project.

In all, this technique allows you to implement a complex algorithm that would otherwise be dif-
ficult to write in LL in ST while still being able to use the simplicity of LL. Typically, you want to
keep your whole codebase in a single language; however, there are exceptions to this rule, mainly
in the form of libraries, which we’ll explore in subsequent chapters. For now, though, we’re going

to focus on our final project!

Final project: Creating a unit converter

In automation programming, it is very common to have to convert between different units of mea-
surement to support clients around the world. This is especially true if you have a single codebase
that supports a specific machine thatis deployed to many different regions. To accommodate the

different units of measurement, we’re going to create a function block.

You might be asking yourself, Why a function block? Why not just use simple functions? In prac-
tice, we could get away with a simple function; however, in software engineering, it is important
to try and think ahead. In the future, we may want to have more units to convert between. If we
were to use pure functions, we could end up with a bunch of conversion functions hanging out
in the project tree. However, if we use a function block, we can add a level of organization to the

project and create different objects that can share the code.

For our final project, we are going to create a very simple function block that can convert the

following units:

e Ibstokgsand kgs to lbs

. Feet to meters and meters to feet

Depending on what you're working on, there will probably be many more units; however, it’s

important to remember that this is just an example.

118 Object-Oriented Programming: Reducing, Reusing, and Recycling Code

The first thing we need to do is create a function block called UnitConverter and add two methods
called convertWeight and convertLength toit. To implement these methods, both should have
a Return type value of REAL and an Access specifier value of PUBLIC. When you’re done, your
function block should look like the following:

= UnitConverter (FE)
|_:|:1 convertLength
ﬁ,} convertWeight

Figure 4.19: Unit converter with methods

For this project, we do not have to make any changes to the UnitConverter function block. The
only changes made will be to the convertLength and convertWeight methods, which will be as
follows.

These are the convertLength method variables:

METHOD PUBLIC convertLength : REAL

VAR_INPUT
lengthInput : REAL;
metric : BOOL;
END_VAR
VAR
conversionFactor : REAL := 3.281;
END_VAR

This is the convertLength method logic:

IF metric = TRUE THEN

convertLength := lengthInput / conversionFactor;
ELSE

convertLength := lengthInput * conversionFactor;
END_IF

These are the convertWeight method variables:

METHOD PUBLIC convertWeight : REAL
VAR_INPUT

Chapter 4 119

weightInput : REAL;

metric : BOOL;
END_VAR
VAR

conversionFactor : REAL := 0.4536;
END_VAR

This is the convertWeight method logic:

IF metric = TRUE THEN

convertlWeight := weightInput * conversionFactor;
ELSE

convertlWeight := weightInput / conversionFactor;
END_IF

Essentially, both methods will work off a Boolean value. If the value is TRUE, it will convert the

numerical argument to its metric counterpart; if it is FALSE, it will convert to a standard value.

To call these methods, we will add the following lines of code to the PLC_PRG file:

PROGRAM PLC_PRG

VAR
unitConverter : UnitConverter;
meters : REAL;
feet : REAL;
pounds : REAL;
grams . REAL;
END_VAR

The logic for the PLC_PRG file is as follows:

meters := unitConverter.convertLength(32, TRUE);

feet := unitConverter.convertLength(32, FALSE);
pounds := unitConverter.convertWeight (100, TRUE);
grams := unitConverter.convertWeight(100, FALSE);

120 Object-Oriented Programming: Reducing, Reusing, and Recycling Code

When the code is run, you should get the following output:

Expression Type Value
+ @ unitConverter UnitCon...
@ meters REAL 9.753124
@ feet REAL 104,992
@ pounds REAL 45,36
g grams REAL 220,458557

Figure 4.20: Unit conversion

This is an example of a real-world function block that can be put into a production machine.
However, if you do decide to put a unit converter into your machine, you may want to add some

more conversion methods.

Summary

OOP is the backbone of all modern programs. OOP is so ingrained in the IT world that you can’t
function as a programmer without an in-depth knowledge of the concept. The days of being able

to get away with simply programming machines, in a procedural sense, with LL are quickly fading.

This chapter was simply a soft introduction to OOP. When creating a program, it is usually con-
sidered wise to approach the program from an OOP point of view. This means that instead of
just jumping to using simpler structures, such as functions (though there is a time and a place
for functions and other simple structures), from this point forward in your programming jour-
ney, you're going to want to think about how things relate to each other and can be condensed
into logical units. With that being said, OOP is way more than just organizing your code into
function blocks. Now that we have a grasp on function blocks, methods, properties, recursion,
and implementing LL programs with components written in ST, we can learn how to leverage
these to reduce redundant code, create cleaner code, and apply actual architecture to programs.
In the next chapter, we’re going to explore some common OOP techniques to get the most out

of the paradigm!

Chapter 4 121

Questions

1

2
3
4.
5
6

What s a function block called in traditional programming languages?
What is recursion?

What is the purpose of the THIS keyword?

What are the two methods that make up a property?

What is the difference between a getter and a setter?

What is a method?

Further reading

CODESYS function blocks : https://content.helpme-codesys.com/en/CODESYS%20
Development%20System/_cds_obj_function_block.html

CODESYS “This” keyword: https://content.helpme-codesys.com/en/CODESYS%20
Development%20System/_cds_pointer_this.html

Integrating Structured Text With Ladder Logic: https://www.youtube.com/
watch?v=BQLvaiX66N4

Join our community on Discord

Join our community’s Discord space for discussions with the authors and other readers: https://

packt.link/embeddedsystems

https://content.helpme-codesys.com/en/CODESYS%20Development%20System/_cds_obj_function_block.html
https://content.helpme-codesys.com/en/CODESYS%20Development%20System/_cds_obj_function_block.html
https://content.helpme-codesys.com/en/CODESYS%20Development%20System/_cds_pointer_this.html
https://content.helpme-codesys.com/en/CODESYS%20Development%20System/_cds_pointer_this.html
https://www.youtube.com/watch?v=BQLvaiX66N4
https://www.youtube.com/watch?v=BQLvaiX66N4
https://packt.link/embeddedsystems
https://packt.link/embeddedsystems

OOP: The Power of Objects

Object-oriented programming (OOP) is much more than just programming with function blocks.
Assuming that OOP is simply programming with function blocks has led to the downfall of many
projects. In reality, OOP can best be thought of as a way to model real-world objects and concepts
using function blocks as their digital blueprints. The power of OOP comes from the function
blocks themselves being governed by a series of pillars or rules that can reduce code, create clear
relationships, and allow for logical cohesion. The ideal result of a well-crafted OOP program is a

codebase that is slimmer, easier to maintain, and makes more sense in general.

OOP can be a very abstract concept to those who have never used it before. At times, the techniques
explored in this chapter may seem counterintuitive, convoluted, or flat-out useless. However, the
key to a well-written, modern, and quality codebase that will last the test of time is understanding
how to utilize these concepts in a practical way. This chapter will explore OOP in a more nuanced
manner and will delve into how to form relationships between function blocks. To explore the

nature and concepts of OOP, we will explore the following topics:

e Understanding access specifiers

e Exploring the pillars of OOP

e Exploring the PROTECTED access specifier
e Inheritance versus composition

e Examining interfaces

To round out the chapter, we will create a simulated assembly line using the concepts that we

explore in this chapter.

124 OOP: The Power of Objects

Technical requirements

Though we are dealing with complex programming, there are no extra plugins needed to follow
along with the examples. As usual, to follow along, you will need a copy of CODESYS installed on

your computer. The code for the examples can be found at the following GitHub URL: https://
github.com/PacktPublishing/Mastering-PLC-Programming-Second-Edition/tree/main/

Chapter%205

Understanding access specifiers

Before we begin our deep dive into OOP, we need to first understand the mechanics of hiding data.
That is, we need to understand how to hide attributes. To do this, we need to understand the
concept of access specifiers. As we explored in Chapter 4, we typically want to restrict or hide as
many attributes as we can from other POUs. We do this to prevent potential bugs from sneaking
into our program. The key to hiding attributes is access specifiers. In short, an access specifieris a
way of signaling to the PLC program whether another POU outside of a function block s allowed to
manipulate or use an attribute, mainly a method. In the context of IEC 61131-3, an access specifier
will typically only refer to a method; however, you can think of internal function block variables

in a similar manner. Therefore, let’s take a deeper look at access specifiers!

Exploring the different types of access specifiers

Different programming languages and PLC programming systems often support a number of
different access specifiers that do different things. For our purposes, we’re going to explore what
I like to call the big three. The big three are arguably the most common access specifiers that are

found in most OOP languages. The big three are as follows:

e Private: Private methods cannot be accessed outside the function block they are declared
and implemented in. In other words, these methods are restricted and can only be used
internally. Private methods are best utilized for operations that are orchestrated by other
methods inside the function block they are in. Ultimately, private functions should be
the worker bees of a function block. When implemented correctly, most of the methods

in a function block will usually be private.

e Public: This access specifier will grant any POU file that has a reference to the function
block the ability to use the method. Generally, you want to limit the use of public methods
in production code; however, they are necessary at times. You will usually use a public
method as a way to kick-start a process or invoke a specific task from outside the func-

tion block. When implemented correctly, a public method either does a task or invokes

https://github.com/PacktPublishing/Mastering-PLC-Programming-Second-Edition/tree/main/Chapter%205
https://github.com/PacktPublishing/Mastering-PLC-Programming-Second-Edition/tree/main/Chapter%205
https://github.com/PacktPublishing/Mastering-PLC-Programming-Second-Edition/tree/main/Chapter%205

Chapter 5 125

a series of private methods. A pitfall that many inexperienced programmers will fall into
is that they will make all their methods public. This is asking for trouble and will cause
issues later down the road, as methods that are not supposed to be directly invoked will,
which in turn, will cause erroneous behavior. A general rule I like to follow is to use public

attributes sparingly.

e Protected: Of the big three access specifiers, protected is used the least. Protected signals
that only a function block and its children can invoke a method. This is a concept we will

explore in the next section.

Note

\E/\/

Arguably, the two most used access specifiers are PUBLIC and PRIVATE.

When I was first learning about access specifiers, used a simple trick to help me conceptualize
which one I should use. For the trick, I would think of each access specifier as a security level:

e Level1-public: Use when unrestricted access is allowed and needed

e Level2 - protected: Use when only certain files need access to the method

e Level 3 - private: Use when components should only be used by other internal attributes

Now that we have a basicidea of what access specifiers are and when to use them, let’s see them

in action! In the next section, we’re going to explore the PRIVATE access specifier.

PRIVATE access specifier in action
To explore the PRIVATE access specifier, we're going to make some coffee! This program will be
composed of a function block, CoffeePotFB, and the following three methods:

e startHeater (private method with a return type of WSTRING)

e startWaterPump (private method with a return type of WSTRING)

e makeCoffee (public method with a return type of BOOL)

126 OOP: The Power of Objects

To implement the methods, simply click on the function block, select Add Object, and then
Method. Use the information in the bullets to fill out the wizard. When you’re done creating the

files, you should have the following tree:

=-|=] coffeePotrs (FB)
ﬁ,} makeCoffes
ﬁ,} startHeater (private)
E} startWaterPump (private)

Figure 5.1: Coffee tree

In Figure 5.1, both the private methods are marked as such. The three methods will not have
any variables, but the CoffeePotFB function block will. The variables for CoffeePotFB will be

as follows:

FUNCTION_BLOCK PUBLIC CoffeePotFB
VAR_INPUT
END_VAR
VAR_OUTPUT
heater : WSTRING;
water : WSTRING;
END_VAR
VAR
END_VAR

Essentially, the function block will have only two variables that will hold a message string to

simulate the internal workings of the coffee pot. The logic for these methods will be as follows:

e startHeater method logic:

startHeater := "heater started";

e startWaterPump method logic:

startWaterPump := "water pump on";

e makeCoffee method logic:

heater := startHeater();

water := startWaterPump();

Chapter 5 127

In this case, we have a heater and a water pump method that simulates the internal components
of the device. In real life, we wouldn’t want our users messing with these dangerous components.
The heater could burn them, and the pump could possibly hurt them under the right circum-
stances. If the user had to manually work these components, at the very least, they would get a
lousy cup of coffee. To be responsible, we need to hide these methods from our users and give

them an easy-to-use interface to start the coffee-making process.

In this case, we’re hiding away the internal complexity (needing to manually work the heater
and water pump) by using the PRIVATE access specifier. At the same time, we’re going to provide

an easy-to-use interface to start the coffee-making process — that is, the makeCoffee method.

The final part of the program is the code that will go into the PLC_PRG POU file. The variables for
this POU are as follows:

PROGRAM PLC_PRG

VAR
coffeeMaker : CoffeePotFB;
heater : WSTRING;
water . WSTRING;
END_VAR

Here we have a simple object variable and two variables to hold our output from the methods.

The program’s main logic should match the following:

coffeeMaker.makeCoffee();

heater :

coffeeMaker.heater;

water

coffeeMaker.water;

When the program is run, you should be met with Figure 5.2:

Device Application.PLC_PRG

Expression Type Value

+ @ coffeeMaker CoffeePotFB
@ heater WSTRING “heater started”
@ water WSTRING “water pump on”

Figure 5.2: Program output

128 OOP: The Power of Objects

What this program did was use one PUBLIC method to call two PRIVATE ones. The startHeater
and the startWaterPump methods could not be called from outside the function block. If you try
to call the methods from, say the PLC_PRG POU file, you'll find that you can’t. In other words, we
hid some of the internal complexity and delegated all the complex tasks, such as starting the

water pump and heater at the correct time, to the coffeeMaker method.

The coffee pot example used two OOP pillars, encapsulation and abstraction. In the next section,
we’re going to take a deeper look at these two concepts, along with the inheritance and poly-

morphism principles.

Exploring the pillars of OOP

The core of OOP is composed of four pillars. When implemented correctly, these pillars can ensure
that you can easily scale, modify, and troubleshoot your codebase. In the automation industry,
where money is directly related to time, having a flexible and easy-to-troubleshoot codebase is

vital not only to the success of a machine but to an organization in general.

Depending on who is asked, OOP is governed by four pillars: encapsulation, abstraction, inheritance,
and polymorphism. Some sources, especially automation sources, will cite only three pillars due
to some developers grouping abstraction and encapsulation together and essentially classifying
them as two sides of the same pillar. Academia usually teaches that there are four pillars, and
it is more common to hear about four pillars as opposed to three in traditional programming

circles. For this book, we’re going to treat encapsulation and abstraction as two distinct concepts.

Encapsulation versus abstraction

As a programming instructor, two of the most basic OOP principles, encapsulation and abstrac-
tion, are two of the hardest to teach. This is because formal textbook definitions are a bit too
abstract to be applied by novice programmers. Formally, abstraction is described as the process
of exposing only the essential features of an object while hiding the implementation details, while en-
capsulation is defined as the bundling of data (variables) and behavior (methods) into a single unit

(such as a class or function block) and restricting access to the internal details using visibility controls.

In my opinion, the most productive way to approach these concepts is to think of abstraction as
a design choice and encapsulation as the mechanism to implement abstraction. What this boils

down to is the following:

e Abstraction: In most cases, the fewer elements that can access a variable or method, the
better. The concept of hiding these components and only having the necessary ones vis-

ible to other files is what is known as abstraction. Essentially, abstraction is the concept

Chapter 5 129

of hiding components/data from other POU files. By the formal definition, this may seem
more like encapsulation, but I like to group this principle with abstraction because you
have to choose what will be hidden and what will be exposed to outside attributes. In the
case of the coffee pot, we hid the internal workings of the heater and the water pump, but
we gave the user an easy-to-use interface (the coffeeMaker method) to do the hard work

for them. What we did in that example was essentially a practical form of abstraction.

e Encapsulation: Encapsulation is a concept that deals with binding data into logical units.
Function blocks are the normal modular unit in which logically related attributes are
bound. The goal of encapsulation is to group related data and ultimately hide the com-
plexity of the unit. Again, think of the heater and water pump as this was the coffee pot’s

internal complexity that we hid away.

Some traditional sources may say these definitions are blurry or inverted; however, there is a
reason why both of these concepts were originally lumped together as a single pillar and still are
in many PLC documents. Put simply, both concepts walk together. In practice, you can’t use one
without the other and you’re not going to cleanly separate the two concepts when you’re on the
shop floor programming a machine. When you’re designing your program, you will often think
of abstraction as what you need to hide and what you need to expose —in other words, what will
be PRIVATE, PUBLIC, or PROTECTED. On the other hand, you’ll typically think of encapsulation as
the primary mechanism to hide complexity. In other words, you want to think of abstraction as

a design choice and encapsulation as the mechanism to implement the design.

These concepts are often confusing, especially when one views them through a formal defini-
tion or a purely conceptual lens. The simplest way to think of abstraction and encapsulation is
through the lens of your computer. Your computer has millions of electrical components. These
components are grouped together to form a module, and the modules are wired together to form
aworking computer. When considering the average user, they don’t, and in many cases shouldn’t,
know how computer electronics work to operate the machine. For the typical user to operate a
computer, all they need to know how to do is turn the computer on, use a mouse, and use the key-
board. Realistically, the average person poking around the electronics will be detrimental in many

cases. An untrained person would probably damage the computer, and in some cases, themselves!

This example is essentially the basis for encapsulation and abstraction. The complex electronics
that power a computer are hidden from the user. Computer manufacturers go to greatlengths to
encapsulate electrical components so the average user can’t get to them. This hiding is analogous
to the encapsulation of software attributes. On the other hand, the user needs to know how to

press the power button to turn the computer on, but they don’t need to know what order the

130 OOP: The Power of Objects

chips need to be powered on in. Attributes such as the power button, keyboard, and mouse can
be thought of as abstractions. The user only needs a high-level understanding of how to press
a button or move a mouse to make the computer work. In other words, the complexity of the

computer is abstracted out!

When designing a program, you want to keep the same mentality. You only want to expose at-
tributes that are absolutely necessary to other POUs while hiding the rest. You need to think of
other POU files as the computer user; knowing or being able to do too much could easily lead to

damage or erroneous behavior. A good rule of thumb is to only allow other files to see attributes —

in this case, those easy-to-use interfaces that are necessary for a given operation to be carried out.

For languages that support it, abstraction and encapsulation are arguably the two most import-
ant topics in OOP. In all, encapsulation and abstraction are accomplished with access specifiers.
For this book, the visibility of attributes such as methods will be denoted with the PUBLIC or
PRIVATE access specifier.

Though encapsulation and abstraction are very powerful concepts, an equally powerful OOP

principle that we’re going to explore in the next section is inheritance.

Inheritance

Inheritance mostly conjures up thoughts of receiving material possessions from the dearly de-
parted. In terms of programming, the concept is similar without anyone, or in the case of PLCs,
anything needing to pass away. In programming, special relationships can be formed between
function blocks. These relationships allow one function block to use certain attributes of another.
In other words, inheritance allows you to cut down on redundant code. Inheritance will let you
reuse reliable code that exists in one function block inside a different one. As such, inheritance
will help you write code that can be used in many different places but will only require you to

keep the code in one central location.

In all types of programming, the concept of inheritance is often abused, especially among inex-
perienced programmers. Inheritance is not meant to be a way of circumventing access specifiers
or using attributes from unrelated function blocks! Instead, you use inheritance when there ex-

ists an “is-a” relationship between two function blocks. To demonstrate this, think of a vehicle.

A vehicle will have an engine and wheels; however, there are different types of vehicles. For ex-
ample, one could have a car or a truck. If we were to convert this concept to a PLC program, we
would have a car function block and a truck function block. However, since both of these are

vehicles, we can cut down on some coding and add a vehicle function block as well. In this case,

Chapter 5 131

the vehicle function block would serve as a generic template known as a base or parent function
block. Since we can safely say that a car is a vehicle and a truck is a vehicle as well, we can inherit
the visible attributes from the vehicle function block and cut down on some coding. In this case,
since the car and truck function blocks are inheriting from the vehicle block, we can call these

child or derived function blocks.

To code this up, we are first going to create a standard function block called VehicleFB. After
creating the function block, add two PUBLIC methods called revEngine and spinWheels with
areturn type of WSTRING. When completed, your function block tree should look like Figure 5.3:

=-[Z] vehiders (FB)
ﬁ,} revEngine
ﬁ,} spinWheels

Figure 5.3: VehicleFB tree
For revEngine, add the following line of code:
revEngine := "rev";
Add the following for spinWheels:

spinWheels := "spin";

Next, add a new function block named CarFB, but ensure the Extends button is checked and

VehicleFBisin the box next to it, as in Figure 5.4:

Add POU *
@ Create a new POU (Program Organization Unit)

Name
CarFB

Type
() Program
O Function block

B Extends vehideFs C]
[| 1mplements
[Final (] Abstract

Figure 5.4: Inheritance setup

132 OOP: The Power of Objects

Repeat the same process with a function block named TruckFB. After generating the function

blocks, enter their code area, and you should see something akin to Figure 5.5:

FUNCTION_BLOCK TruckFB EXTENDS VehicleFB
VAR_INFUT

END VAR

VAR_OUTPUT

END VAR

VAR

END VAR

Figure 5.5: EXTENDS code

The key here is the EXTENDS keyword. The EXTENDS keyword signals inheritance. In the case of
Figure 5.5, the code is telling TruckFB to inherit from VehicleFB.

As counterintuitive as it may seem, we are not going to add any methods to the truck or car func-
tion blocks. Instead, we’ll add the following variables to the PLC_PRG POU file.

PROGRAM PLC_PRG

VAR
car : CarFB;
truck : truckFB;
carRev : WSTRING;
carSpin : WSTRING;
truckRev : WSTRING;
truckSpin : WSTRING;

END_VAR

The following code is for the PLC_PRG logic:

carRev 1= car.revkEngine();

carSpin car.spinWheels();

truckRev truck.revEngine();

truckSpin := truck.spinWheels();

Chapter 5 133

When the code is run, you should get the output in Figure 5.6:

Device Application.PLC_PRG

Expression Type Walue

+ d car CarFB

+ @ truck truckFB
@ carRev WSTRING "rew”
@ carspin WSTRING “spin”
@ truckRev WSTRING rev”
d@ truckSpin WSTRING "spin”™

Figure 5.6: Inheritance output

Notice that we are calling the revEngine and spinWheels methods and getting results without
implementing them in the car or truck function block. A keen-eyed observer may wonder what’s
going on. Essentially, since we are inheriting from the vehicle function block, CarFB and TruckFB
now have access to those methods. In other words, CarFB and TruckFB inherited their current

functionality!

Note

V4 You can add unique methods to the child function blocks. If you do so, these meth-
\E/ ods will only be visible to that function block and any possible children thatit could
have. The parent function block will not be able to access PRIVATE or PROTECTED

attributes in the child.

Most modern programming languages, including the many PLC programming systems that sup-
port the pillar, restrict inheritance to one function block. In other words, you can’t inherit from
more than one function block at a time. Though you can only extend one function block, you can

inherit properties from other function blocks through what is known as the inheritance chain.

Essentially, the inheritance chain is like a flow-down system. If you extend a function block that
extends another function block, you will be able to access the properties from both. To demon-
strate this, add a PUBLIC method to TruckFB called truckBed, set the return type to WSTRING, and
add the following code to it:

truckBed := "put stuff here";

134 OOP: The Power of Objects

Once you do that, add another function block called BigWheeler and have it inherit from TruckFB.
As we did with the last example, we are not going to add any methods to BigWheelerFB.

For this example, we’re going to have the following variables in the PLC_PRG POU file:

PROGRAM PLC_PRG

VAR
bigWheel : BigWheelerFB;
spin : WSTRING;
rev : WSTRING;
bed : WSTRING;
END_VAR

We’re also going to add the following logic to PLC_PRG:

spin := bigWheel.spinWheels();
rev := bigWheel.revEngine();
bed := bigWheel.truckBed();

When the code is executed, you should see what’s shown in Figure 5.7:

Device. Application.PLC_PRG

Expression Type Value
+ @ bigWheel BigWhe...
@ spin WSTRING "spin”
@ rev WSTRING rev”
@ bed WSTRING “put stuff here”

Figure 5.7: Inheritance chain

Notice that BigWheelerFB was able to call methods from both VehicleFB and the TruckFB. Thisis
the chain at work! In short, Figure 5.7 shows that if you inherit from a function block thatinherits

from another, you will be able to use available attributes from both!

Note

&

In this case, BigWheelerFB is known as a grandchild function block.

Chapter 5 135

Inheritance and the inheritance chain are excellent tools, but they only allow using what was
already defined in another function block. However, what if we run into a situation where we
need to change the functionality of a method? Is it possible to morph the behavior of the attribute?

The answer for some PLC systems is yes!

Polymorphism

Polymorphism is the concept of changing an attribute from one function block to another. For
example, the truck we created in the last example is probably going to have more traction when
it spins its wheels than the car CarFB models. To give our truck more traction, we’re going to

change the way the spinWheels method behaves, at least for TruckFB.

There are many ways to implement polymorphism; however, the easiest and probably the most
common way to implement the conceptis by simply redefining the attribute in the child function
block. In this case, all we’re going to do is create a spinWheels method in the TruckFB function
block. We’re going to give this method all the same properties and the exact same name as in

Figure 5.8:

=-[E] TrudFB (FB)
ﬁ,} spinWheels

Figure 5.8: TruckFB tree

The only code for this method will be as follows:

spinWheels := "lots of traction";

For this example, we’re going to use the following variables in the PLC_PRG POU file:

PROGRAM PLC_PRG

VAR
truck : TruckFB;
spin : WSTRING;
rev : WSTRING;
bed : WSTRING;
END_VAR

As well as the following logic:

spin := truck.spinWheels();
rev := truck.revEngine();
bed truck.truckBed();

136 OOP: The Power of Objects

When the code is run, you should see Figure 5.9:

Device Application.PLC_PRG

Expression Type Value

+ @ truck TruckFB
@ spin WSTRING “lots of fraction”
@ rev WSTRING "rev”™
@ bed WSTRING "put stuff here”

Figure 5.9: Polymorphism in action

Notice that instead of the method returning simply spin, we got lots of traction!Essentially,
we overrode the VehicleFB version of the method and gave TruckFB its own unique implemen-
tation. You will often use this technique, when available, when the base function block’s version

of the method is too generic or doesn’t reflect the child function block’s needs.

Note

&

This form of polymorphism is called method overriding.

The best way to think of polymorphism is as a means of changing a behavior. In our TruckFB ex-
ample, we changed our spinWheel method to display the proper traction reading for the function

block. In other words, we morphed the behavior of the object.

Note

V4 Some PLC implementations will use a keyword similar to SUPER that will allow you
\E/‘ to call the base function block’s implementation. Thatis, in supported systems, you
can use a keyword such as SUPER to call the VehicleFB version of spinWheel in the

TruckFB function block.

By this point, you should have a solid understanding of the four pillars of OOP. However, one key
aspect of OOP that we have yet to explore is the PROTECTED access specifier. As we explored, this
is a unique and sometimes confusing access specifier. In the next section, we’re going to clear

some of the confusion by seeing it in action.

Chapter 5 137

Exploring the PROTECTED access specifier

The two main access specifiers that we explored are PUBLIC and PRIVATE. As we explored, the
PUBLIC access specifier allows access to any attribute from any POU. On the other hand, the
PRIVATE access specifier will restrict a component’s visibility and usability to only attributes
in the same function block. The PROTECTED access specifier is in between these. If a method is
declared as protected, any file in the function block and child function blocks can access it. To
demonstrate this, make two function blocks, one called BaseFB and one called ChildFB. When

setting these function blocks up, ensure that ChildFB EXTENDS BaseFB.

Once you have the function blocks set up, add a method called testMethod to BaseFB. Be sure to
set the access specifier to PROTECTED and the return type to INT, as in Figure 5.10:

Add Method X

B
deec Create a new method

Name
| testMthod

Return type
INT

Implementation language
Structured Text (5T)

Accessspecifier
PROTECTED [] Abstract

|' Add | Cancel

Figure 5.10: The testMethod setup

138 OOP: The Power of Objects

The only code for this function block will be in testMethod, and it should match the following:
testMethod := 10;

In ChildFB, add a PUBLIC method with an INT return type called getVal, and add the following

code to it:

getVal := testMethod();

Finally, in the PLC_PRG file, set up the following variables and code:

PROGRAM PLC_PRG

VAR
BF : BaseFB;
CF : ChildFB;
vall : INT;
val2 : INT;
END_VAR

In this case, BF and CF are references to BaseFB and ChildFB, respectively, while vall and val2

will hold return values.

The core logic for this program is as follows:

vall :
val2 :

BF.testMethod();
CF.getVal();

Once you have all this set up, run the code. You should be met with what’s shown in Figure 5.11:

vall := BF.testMethod();
val2 := CF.getVal();

| CODESYS *®
0 Errors occured during code generation, See message list,

0K

Figure 5.11: Error

Chapter 5 139

What the error is essentially saying is that you’re trying to access a PROTECTED attribute from a
file that does not inherit from BaseFB. To use testMethod, comment out the first line of the core

logic in the PLC_PRG file and rerun the program.

Device Application.PLC_PRG

Expression Type Value Prepar.. Address Comm...
¥ @ BF BaseFB
+ @ CF ChildFB

$ vall INT 0

val2 INT 10

Figure 5.12: Output

In this case, we called a PUBLIC method in the derived function block to invoke the PROTECTED

method in the parent block, and we got the expected value.

So far, we have touched upon all four of the pillars of OOP, as well as the PROTECTED access speci-
fier. As you might guess, inheritance and polymorphism are very rich and complex topics, and we
have merely touched the surface. For now, we are going to start exploring other concepts that are
not necessarily a part of the four pillars but are still powerful OOP concepts. One very common

principle that needs to be explored is composition and how it contrasts with inheritance.

Inheritance versus composition

Inheritanceis a very important concept and is, without a doubt, a great way to recycle code under
the right circumstances. However, many new or inexperienced programmers will often use in-
heritance as ameans of importing code. This is a bad practice because instead of producing clean,
organized code, they produce jumbled-up code that has no true relationships between function
blocks. As we saw with inheritance, when developing object-oriented code, it is very important
to consider the relationships between function blocks. One very common way to implement

object-oriented relationships is with a concept known as composition.

When to use composition

For many inexperienced, traditional programmers, composition is often an ill-understood but,
ironically, often-used concept. The concept of composition can be summarized as assembling
things. In other words, composition is where you include object references from one function

block in another to essentially build something. Where inheritance utilizes an “is-a” relation-

140 OOP: The Power of Objects

ship between function blocks, composition uses a “has-a” relationship. In other words, we can

summarize when to use composition or inheritance with the following:

e Composition: If something has something else

e Inheritance: If something is something else

Essentially, the best way to choose which technique to use is to ask yourself whether the function
block you’re working on is something (such as if a cat is a feline) or if something has something (such

as does a car have an engine?).

The core idea behind composition is that we are building function blocks from other function
blocks. Think of our vehicle example again. If we were programming a car, as we did, we would
need an engine, wheels, and so on. If we were using inheritance and wanted to change the engine
of our car or truck, we would have to change what we were inheriting from. That is, in our old
program, we would have to create a new VehicleFB to inherit from or use some other more com-
plicated technique, such as polymorphism. However, with composition, we can simply change

the reference to the engine, and we would be good to go.

Many developers will often favor composition over inheritance for many reasons. One of the
core reasons developers usually opt to use a “has-a” relationship and composition over an “is-a”
relationship and inheritance is that inheritance produces more tightly coupled code. This means
thata change in the base function block can have aripple effect that unintentionally changes the
behavior of the child function blocks. Since composition is assembling complex objects from other
objects, a change to one of the component classes does not necessarily mean that the changes

will have the same ripple effect.

Composition in practice
To demonstrate composition, we’re going to create a Car function block. To do this, let’s analyze
some components of a car. A car is composed of many parts that have functionality, such as the

following:

e Engine:rev
e Transmission: shift

e Brakes: stop

Chapter 5 141

For this tutorial, we are going to create a Car function block. By the end of the tutorial, this block
is going to be composed of an Engine, Transmission, and Brakes function block. Therefore, the
project tree for this tutorial should look like Figure 5.13:
=} Application
m Library Manager
Brakes (FE)
Car (FB)
Engine (FB)
PLC_PRG (PRG)
Transmission (FE)
= @ Task Configuration
= @ MainTask (IEC-Tasks)
& PLC_PRG

Figure 5.13: Car project structure

The function blocks will be straightforward, as each block will have one method. Each meth-
od will only have one line of code and no variables. All the methods will have a return type of
WSTRING, and they will be set to PUBLIC. The code for each function block’s method along with
correct name are as follows:

e TheBrakes function block’s stop method:

stop := "stop";

e The Transmission function block’s shift method:

shift := "shift";

e The Engine function block’s rev method:

rev := "rev";

The Car function block will be a bit different. This function block will not have any methods, and

the only code will be variables that reference the other function blocks, like so:

FUNCTION_BLOCK Car
VAR_INPUT

END_VAR

VAR_OUTPUT

END_VAR

142 OOP: The Power of Objects

VAR
brakes : Brakes;
engine : Engine;
transmission : Transmission;
END_VAR

The final piece of the tutorial that needs to be implemented is the code in the PLC_PRG file, which
will look like the following:

PROGRAM PLC_PRG

VAR
car . Car;
drive : WSTRING;
stop : WSTRING;
shift : WSTRING;
END_VAR

The logic will look like the following:

drive := car.engine.rev();
shift := car.transmission.shift();
stop := car.brakes.stop();

When the code is run, you should be met with the output in the following screenshot:

Expression Type Value
+ @ car Car
@ drive WSTRING “rev”
stop WSTRING “stop”
@ shift WSTRING "shift"

Figure 5.14: Car output

As you can see, we accessed the methods from the three component blocks with the Car function
block. Essentially, what we did was encapsulate three reference variables in the Car block. If you
look at the lines of code, we referenced the Car function block variable, which allowed us to access

the internal references to the Engine, Brakes, and Transmission blocks.

Chapter 5 143

In this example, we essentially built a car. A car is not an engine, transmission, or brakes; as such,
inheritance was not appropriate to use here. However, a car has an engine, transmission, and
brakes. This means that to create a car as we did, it was more appropriate to use composition. In
this case, we are still able to recycle our function blocks without becoming totally dependent on
any given one. In essence, we can remove the old engine and replace it with a high-performance

one without completely overhauling the code as we would with inheritance.

Composition is probably one of the most important concepts in OOP. Though the composition
technique is not an official pillar of OOP, you will find yourself using it much more often than

inheritance, which is why it is sometimes referred to as the fifth pillar.

In PLC programming, sometimes using a function block can actually hamper us. Sometimes, when
we model an object, all we need are a few very broad definitions. In the following section, we’re

going to explore how to leverage generic implementations using interfaces.

Examining interfaces

In the real world, we often work from templates. For example, engineers will not overhaul the
design of a car. In reality, certain patterns are always followed. For example, all cars have four
wheels, brakes, an engine, a steering wheel, and so on. However, what will change between cars
is the way the parts work. In other words, the overall functionality is the same, but the way in
which the components operate will vary. For example, a car will always have four wheels, but
the size of the wheels and the type of rims will vary from car to car. When sketching out a car,
an engineer may draw a few circles as a placeholder to represent wheels but won’t decide on a
type until the car moves into production. In programming, we can do something similar using

what’s called an interface.

If youread a textbook on traditional, general-purpose programming languages such as Java or C#,
you will see that interfaces are often referred to as contracts. When you opt to use an interface,
you are telling the programming system that you agree to, at the very least, implement all the

methods prototyped in the interface. However, in my opinion, this is a little confusing.

Generally, when I describe an interface to a new programmer, I usually describe it as a model for
something. For example, if we are building an airplane, we will need certain things, such as wings,
an engine, and a cockpit, regardless of whether we are building a prop plane or an F-35 fighter jet.
Obviously, for each type of plane, these parts are going to be different. When we implement an
interface, we are telling our function block that we are going to use the methods that are declared

in the interface, but those methods may have different implementations.

144 OOP: The Power of Objects

To demonstrate how an interface works, let’s implement one. For this example, let’s pretend we
are making an airplane. As was stated before, regardless of the type of plane, each will have a
cockpit, engine, and wings. To create an interface, we are going to right-click Application in the

project tree, click Add Object, and then select Interface. For this project, name the interface plane.

Create a new interface

Name
plane

Inheritance

[CJExtends

Add | Cancel

Figure 5.15: Interface creation wizard

The preceding screenshot is the wizard window that you will see when you follow the steps cor-
rectly. After creating the interface, we can add methods to it. Adding methods to an interface is
the same procedure as adding methods to a function block. Therefore, add an engine, cockpit,
and wings method to the interface. For this example, the interfaces will all have a return type of

WSTRING, with the exception of engine, which will have a return type of INT.

The cockpit and engine method can be left as is; however, add an argument to the engine method,

as in the following snippet:

METHOD engine : INT
VAR_INPUT

rpms : INT;
END_VAR

Chapter 5 145

Next, we are going to implement the interface in two different function blocks called F35 and

Prop. While spinning up the POUSs, click the Implements box and select the plane interface, as
in Figure 5.16:

=]

@ Create a new POL {Program Organization Unit)

MName
F35

Type
E:J Program
O Function block

[Extends BaseFB -
B8 Implements plane E]
[_] Final [] Abstract

Figure 5.16: Implement interface

After you've completed setting everything up, you should have a structure similar to the following

screenshot:

T} Application
=-=0 plane
lﬁj‘i cockpit
lﬁ?‘ engine
ﬁ% Wwings
m Library Manager
- F35 (FB)
PLC_PRG (PRG)
= Prop (FB)

Figure 5.17: Completed structure

146 OOP: The Power of Objects

Note

Notice that the methods are automatically generated under the function blocks.
\E/\/ Since an interface is a contract or model, you will need to have, at a minimum, the
method defined in the function block that implements the interface, even if it is
empty. Luckily, CODESYS does this for us automatically; however, not every pro-

gramming environment will.

The F35 block methods will consist of the following code:
e F35cockpit method:
cockpit := "1 seat";
e F35engine method:

engine := rpms * 1000;

e F35wings method:

wings := "2";

Important note

\"/ For the following and the preceding examples, write this code in the declared func-
tion block methods.

Once the F35 block is squared away, set the prop methods to the following:
e Prop cockpit method:
cockpit := "2 seats";
e Propengine method:

engine := rpms * 100;

e Propwings method:

wings := "4" ;

Chapter 5 147

As usual, once those are completed, we’re going to make two reference variables and a series of
variables to hold the output in the PLC_PRG POU file:

PROGRAM PLC_PRG

VAR
35 . F35;
prop_plane : prop;
f35_cockpit : WSTRING;
f35_engine : INT;
f35_wings ¢ WSTRING;
prop_cockpit : WSTRING;
prop_engine : INT;
prop_wings : WSTRING;

END_VAR

This is the logic that will call the functions:
35 cockpit := f35.cockpit();
f35_engine := f35.engine(10);

£35.wings();

£35_wings

prop_cockpit := prop_plane.cockpit();
prop_engine := prop_plane.engine(5);

prop_wings := prop_plane.wings();

When the code is run, you should see the following output:

Device.Application.PLC_PRG

Expression Type Yalue
+ @ 35 F35
+ & prop_plane prop
d 35 cockpit WSTRIMNG "1 seat”™
@ f35_enagine INT 10000
@ f35_winas WSTRING "27
d@ prop_cockpit WSTRING "2 seats”
@ prop_enging INT 500
@ prop_wings WSTRING "4"

Figure 5.18: Interface program output

148 OOP: The Power of Objects

This example shows that by using an interface, we can automatically import methods and, more
importantly, model something. As we can see in the example, the methods have the same name
but have differentimplementations. This means that, though we are building two different types

of planes, we are using similar components; however, the ways the components work are different.

Note

\/V You can only implement a method’s name, arguments, and return type in an interface;
however, you cannot implement executable logic in the interface’s method(s). Exe-

cutable logic can only be implemented in the function block’s version of the method.

Another interesting aspect of interfaces is that since they are implemented and not extended,
you can use multiple interfaces in a single function block. In other words, there is a difference
between implementing an interface and inheriting from another function block. Since you can

implement multiple interfaces, you can combine them to model different things.

New or inexperienced programmers usually do not see the benefits of using interfaces. At first
glance, what we did may simply seem like a roundabout way of declaring methods. However, a
well-written program uses interfaces, and there is an old rule that says that you should “code

to an interface.”

Coding to an interface will allow you to create more flexible code. So, if you need to add or remove
more parts, you can do so without breaking implementation elsewhere. It is also a good way to
ensure that projects written by a team are all consistent with method names, arguments, and

return types, and are implementing the correct functionality for their sections.

Now that we have a solid foundation in the art of OOP, we can move on to creating our final project.

Final project: Creating a simulated assembly line
Our final project will consist of a production line. The line will consist of a function block called
controller and another function block called Line that will have the following methods:

e turnMotorsOn

. homeMotors

. startMotors

Chapter 5 149

For this project, we're going to assume that a controller has a line; therefore, we’ll use compo-
sition. In this example, the Controller POU is going to act as a fagade function block to control
the assembly line. The fagade nature of this function block will be similar to facade concepts
that were explored in Chapter 3. In short, the Controller function block will provide a level of

abstraction for the Line block.

The first thing we need to do is create the mentioned methods in the Line function block with

an access specifier of PUBLIC and a return type of BOOL.

The homeMotor method will consist of the following:

outputs.motorState := "motors homed";

The startMotors method will consist of the following:

outputs.startMotors := TRUE;

Finally, the turnMotorson method will consist of the following:

outputs.MotorsOn := TRUE;

Once that is done, create a GVL called outputs and set the following variables:

{attribute 'qualified_only'}
VAR_GLOBAL
motorState : WSTRING;
startMotors : BOOL;
MotorsOn : BOOL;
END_VAR

After the variables are implemented, we can set up the Controller function block. The control-
ler function block will, for this example, enforce abstraction by providing a simple, easy-to-use

interface for us to start the assembly line.

This function block will consist of only a single method called start and a reference variable:

METHOD PUBLIC start : BOOL
VAR _INPUT
END_VAR
VAR
line : Line;
END_VAR

150 OOP: The Power of Objects

The start method’s body will be like the following:

line.turnMotorson();
line.homeMotors();

line.startMotors();

Finally, we will start the assembly line in the PLC_PRG file by using the following code:

PROGRAM PLC_PRG
VAR

controller : Controller;
END_VAR

The method call to simulate starting the assembly line is achieved with the following code:

controller.start();

This will result in the following:

Device Application.outputs
Expression Type Value
ﬂ motarState WSTRING "motors homed™

startMotors BOOL TRUE
@ | TRUE|
@ Motorson BOCL

Figure 5.19: Assembly line output

As can be seen in the preceding screenshot of the GVL outputs, we fired three methods with one
method call. In reality, you would have multiple methods in the Controller block that would
stop the line, pause the line, and so on. It is recommended that you expand the function block

using the principles we explored to add the extra functionality.

Summary

In this chapter, we explored the more advanced features of OOP. OOP is a very powerful and new
concept in the world of PLC programming. When fully embraced and mastered, your complex
project can become greatly simplified. As you become more familiar with OOP and the associat-
ed pillars, you will have no redundant code and will have a very maintainable codebase. As you

master these concepts, you will be able to do more with less code.

Chapter 5 151

Using OOP is a best practice, but following OOP principles does not guarantee you have quality

code. To have quality code, certain rules have to be followed. In the next chapter, we’re going to

learn some best practices that can be used to produce high-quality codebases!

Questions

—_

2
3
4
5.
6
7
8

List the four pillars of OOP.

Is there a limit on the number of interfaces you can implement?
How many function blocks can you inherit from?

What s the difference between PRIVATE and PUBLIC?

What is the PROTECTED access specifier?

Is multiple inheritance allowed in IEC 61131-3?

When would you use inheritance?

When would you use composition?

Further reading

Have a look at the following resources to further your knowledge:

CODESYS interface: https://content.helpme-codesys.com/en/CODESYS%20

Development%20System/_cds_implementing_interface.html

CODESYS Object-Oriented Programming: https://content.helpme-codesys.com/en/
CODESYS%20Development%20System/_cds_f_object_oriented_programming.html

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to packtpub. com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

]

https://content.helpme-codesys.com/en/CODESYS%20Development%20System/_cds_implementing_interface.html
https://content.helpme-codesys.com/en/CODESYS%20Development%20System/_cds_implementing_interface.html
https://content.helpme-codesys.com/en/CODESYS%20Development%20System/_cds_f_object_oriented_programming.html
https://content.helpme-codesys.com/en/CODESYS%20Development%20System/_cds_f_object_oriented_programming.html
http://packtpub.com/unlock

Best Practices for Writing
Incredible Code

Following the theme of this book, there is more to a well-engineered program than simply pro-
ducing a working codebase. Writing a quality codebase is as much an art as it is a science. New
developers often try to impress their bosses and teammates by producing very large and complex
codebases, and many non-technical managers will often see this as a sign of in-depth knowledge.
However, the exact opposite is true. A quality codebase is easy to follow, as simple as possible,

and as well-documented as possible.

There are alot of gotchas that can bury a codebase. A quality, long-lasting codebase requires much
more than working code to last the test of time; however, many codebases suffer from issues that
will drastically reduce their lifespan. There are ways to prevent code from being relegated to the
cyber-heap before its time. In this chapter, we’re going to explore some concepts that can be used

to ensure that your codebases last the test of time. This chapter will explore the following topics:

e Whatis technical debt?

e Understanding naming conventions

e Exploring code documentation

e Understanding and eliminating dead code
e Keepingitsimple

e Whattolook for in a code review

e Things to avoid in software engineering

To wrap things up, we’re going to apply our new skills and code review a PLC program!

154 Best Practices for Writing Incredible Code

Technical requirements

This chapter is dedicated to writing quality code and code reviews. The goal of this chapter is to
present best practices and ways to eliminate technical debt. The concepts that will be presented
here will be generic to all programming languages. In other words, the concepts that we will
explore are language-agnostic. These principles can even be applied to graphical languages such

as Ladder Logic. So, no technology is needed to follow along.

What is technical debt?

To understand why best practices are important, we first need to understand what technical debt
is. This is a concept that is often overlooked by traditional developers and automation program-
mers alike. Technical debt occurs from quick fixes, shortcuts, documentation gaps, and so on.
In automation, a big cause of technical debt is quick fixes. Most quick fixes are not fully fleshed

out, and though they will get you through the day, the fix will usually come with consequences.

Technical debt is like financial debt. If you take out a loan to pay for something, you’ll end up
having to pay the initial cost for the item (the loan) and interest that will usually compound. In
the long run, you’ll end up paying several times what the item would normally cost. Technical
debtis no different; however, the currency of technical debt is time and code complexity. If you're
honest with yourself, you’ll realize that a vast majority of your quick fixes are sloppy at best and
not well thought out, especially those that you implement right before the end of your shift.
When the next upgrade comes, those quick fixes can cause a lot of problems, as they can often
be hard to understand, and they usually add a lot of complexity because they were designed as a
quick workaround for a problem. As a result, you’ll end up spending a lot of extra time fixing or

upgrading whatever it is you’re working on.

The currency of technical debt is time, as mentioned previously. Each bit of technical debt will
equate to extra time that needs to be dedicated not only to fixing the original problem but also
reverting the patch. To lower the technical debt of a program, you have to repair not only the
original problem but the quick fix as well. This means that technical debt will frustrate customers
as they will have extra downtime and typically have to spend extra money to fix the problems
that were caused by technical debt. It will also cost the organization you work with, as your time
will be dedicated to fixing workarounds, and mostimportantly, it will cost you valuable time that

you could dedicate to more productive endeavors.

In terms of automation, the major culprit of technical debt stems from modifying code as a work-

around for broken or misbehaving physical components. Using code as a workaround can easily

Chapter 6 155

render a codebase unmodifiable, which, in turn, means that it will have to eventually be over-
hauled when a modification is inevitably needed. It is never okay to modify code as a workaround
for physical components. These actions will increase your technical debt as you will have to, at
the very minimum, restore the codebase to its original form when the partis fixed. At worst, you
will have to fix the part, quick fix, and make necessary modifications to the codebase. In other

words, it’s all unnecessary added time.

Creating workarounds for misbehaving partsis just one form of technical debt. The remainder of
this chapter is going to be dedicated to exploring other forms of technical debt and best practices
that we can use to improve code. The first set of best practices we’re going to explore is naming

conventions.

Understanding naming conventions

Naming program attributes such as variables, functions, function blocks, methods, and more is
an art. In the old days of computer programming and even in the modern automation world, it
is not uncommon to find variable names such as x and y. Thirty years ago, there was logic be-
hind these names. In the old days of programming, computing devices had limited memory and
storage. This means that a name such as motorSpeed could be very taxing on a system. However,
modern computing devices, such as quality PLCs, have come a long way and can easily handle

areflective name.

Before we start exploring naming conventions, it is very important to understand that these best
practices should be thought of as guidelines. Though naming conventions are very important
there are times when they will be ignored in the name of complexity, teaching, documentation,
and so on. In other words, context will impact naming. With that, there is a lot to naming an

attribute. The first set of rules we’re going to look at is casing conventions.

Casing conventions

Believe it or not, one of the most important attributes of a name is the way it is spelled. Most
attribute names will be a composition of multiple words. To properly format these complex
names, most programmers will use one of the following casing conventions to spell the names

of the program components:

e Camel casing: Arguably, the most common casing convention is camel casing. For this
convention, the first word is spelled in all lowercase letters, and the first letter of each
subsequent word is capitalized. This type of casing is commonly used for variables and

methods. An example is motorSpeed.

156 Best Practices for Writing Incredible Code

e Pascal casing: In terms of Pascal casing, each word in an attribute name is spelled with
an uppercase letter. This format is commonly used for things such as function blocks. An

example is MotorSpeed.

e Snake casing: Snake casing is probably the least used in codebases. It is mostly used for
naming directories, projects, environment variables, and so on. You will commonly see
snake casing when working with operating systems such as Linux. For snake casing, each

word in the name is separated by an underscore. An example is motor_speed.

Aswas seen throughout past examples in this book, we’re mostly going to stick with camel casing;
however, you can use what you want. The convention you use will mostly depend on your style
and the style guidelines of your organization. That being said, if you opt to use a convention for
an attribute, be sure to keep it consistent throughout the program, as this will make the program

easier to read and understand.

Understanding how to spell an attribute’s name is only half the battle. The other half of the battle
is understanding how to properly name an attribute. Therefore, in the next section, we’re going

to explore naming variables.

Proper variable names

Avariable represents an object of some type, such as a person, value, or general thing. This means
that a variable’s name should typically be a noun or noun-based statement, but what matters
more is how descriptive the name is. For example, suppose you’re working with a variable that
represents the weight of a bag. Alogical name for this variable might be bagWeight. A bad name
for this variable would be something like weight or wgt; weight is not very descriptive, as there
could be many weights in a program, and wgt is ambiguous at best. In other words, when naming
avariable, you want to clearly identify what the variable is and what it represents. By doing this,
codebase readers can quickly identify what the variables do, which will cut down on the time it
takes to troubleshoot the codebase. In other words, it will lower the technical debt. A caveat to
this is with teaching or documentation applications. When presenting information, it is often
okay to use a short generic name to get the point across. Though a quality program starts with

properly named variables, functions and methods also need proper names.

Properly naming methods and functions

Put simply, a method or function should usually be a verb name; however, this is one rule that has
some wiggle room, especially in controls/embedded programming. Having a verb is considered

a best practice, but as we’ve seen so far, what’s more important is that the method or function

Chapter 6 157

name be descriptive. Suppose we’re working on a function/method that will turn on a robot. A
logical name would be startRobot (). Here, our verb is start and our statement is start robot.

This name clearly reflects what the attribute does and what system it targets.

An example, of a non-verb name would be something like fan0n () which reads more like a noun
or state description. Regardless, we have a short, intuitive name that clearly demonstrates the at-
tribute’s purpose, turning on a fan. If we were to change the name to somethinglike turnonFan(),

we would have a longer name that would contribute little outside of making it harder to type.

Much like the other program components, function blocks also must be named well.

Naming function blocks

Function blocks represent things; this means that, like variables, they too should have a noun
name. Unlike methods, this ruleis alittle stricter as you don’t want to give a function block a verb
name. It is important to remember that a function block is a blueprint for a thing and having a

verb name would work against its intended nature.

Alot of organizations will either add an FB prefix or a postfix to the name. This prefix or postfix
clearly signals what the attribute is. Whether you end up using a prefix or a postfix will depend
onyour codebase and organization. Though there are no hard and fast rules for which to use, itis
usually the norm to use a postfix if at all. With that, most function block names use Pascal casing.

A common name for a function block might be something like CarEngineFB.

There are other rules for other attributes such as enums, properties, and so on; however, the rules
for those can be found easily on the internet. This section was just to give you a taste of what
names for common attributes should be, and that proper naming lowers your codebase’s overall

technical debt and helps with another debt lowering technique, documentation.

Exploring code documentation

Nothing makes programmers groan louder than being told they must write documentation. Un-
fortunately, documentation is directly linked to the longevity of a codebase. There are many
ways to document a codebase. The three most common methods are code comments, external
documentation, and the code itself. The first type of code documentation we’re going to look at

is self-documenting code.

158 Best Practices for Writing Incredible Code

Utilizing self-documenting code

Awell-written program will provide its own documentation. This means that if written properly,
a program should be easy to follow with minimal aid. To demonstrate this, consider the following

pseudocode:

Input temperature

overHeating = 100

targetTemp = 90

If temperature > overHeating then
ovenFan = on

Elseif temperature <= targetTemp then

OvenFan = off

This program is very clear about how it works, and the variables’ meaning in the program is easily
identifiable. This is essentially what self-documenting code is. Contrast this program with the

following:

x = input
If x > 100 Then

Fan = on
Elseif x < 990 then
Fan = off

This version of the program has very little context as to what’s being measured and what is be-
ing turned off or on. There is no context for what x is because the variable has an illogical name.
There is also no context as to what fan is being turned on, assuming there is more than one fan in
the system. Mostimportantly, the hardcoded values are very ambiguous. In the second program,
there is no meaning behind the values. Thatis, what does 100 actually mean in the context of the
program? If we were to look at the first program, we can easily see that 100 degrees is assigned to
a variable called overHeating which tells us in the context of the program that anything above
100 degrees is considered overheating. In contrast, the targetTemp variable clearly states that
90 degrees is the ideal temperature for the device, and in the context of the program, there is no
need for the fan to turn on. Overall, if you were asked to troubleshoot the second version of the
PLC code in the middle of summer in a very hot shop, chances are you would get frustrated very

quickly trying to figure out what the code is doing.

Chapter 6 159

When writing code, you want your program to have a very refined flow, meaning you want the
paths in your program to be neatly defined and easy to follow. You also want to name your attri-
butes in such a way that you only need a quick glance to determine what the code is doing and
how it works. With that, there is a trick that you can use to help make changes and add context

at the same time. That trick is coding to variables!

Coding to variables

Itis typically a good idea to avoid using hardcoded values in your program. Any time you need to
declare avalue, itis usually a good idea to create a variable and assign the value to that, especially

if that value is used in more than one location. Consider the following code:

Input weight
If weight > 100 then
Display too heavy
Elif weight == 90 then
Display optimal weight
Else
Display too light
Wait 5 minutes
If weight > 100 Then
Send to reject line
Else

Send to accept line

By just looking at this snippet, is there any context for what 100 and 90 are? Basing our assump-
tion on the surrounding code, we can assume they are weights of some kind; however, what are

they weights for? From this code, it’s almost impossible to tell.

Also, we have the 100 value used in multiple locations. If you look at the codebase, we have two
sets of control statements that perform a check on a value that we can assume is some type of
weight. Since that value is in two different locations, if that threshold ever changes, we have to
change it in multiple places. This means this program can be prone to errors because if we ever
must change the value from 100 to, let’s say, 1000, we will have to modify the value in multiple
places. In a nutshell, we can easily miss the value in one or more locations. By missing a change
for a value as critical as the one in the example, the machine will behave in erroneous and even
possibly dangerous ways. A third type of error could occur from mistyping the value. When de-
velopers are in a pinch or have worked along shift, accidentally typing 10 or 1000 instead of 100 is

very common; however, it is a mistake that could have potentially life-threatening consequences.

160 Best Practices for Writing Incredible Code

The best way to ensure we don’t have any programmatic or contextual issues is to set the value
in a variable. By using a variable, we have a single point of truth for the value. This means that if
we ever need to change the value, we only must do it in one place. To demonstrate this, let’s look

at the following pseudocode:

Input weight

overhWeightCementBag = 100

idealWeightCementBag = 90

If weight > overWeightCementBag then
Display too heavy

Elif weight == idealWeightCementBag then
Display optimal weight

Elseif weight < idealWeightCementBag then
Display too light
Wait 5 minutes

If weight > overWeightCementBag Then
Send to reject line

Else

Send to accept line

Looking at this version of the program, we can see that the 100 value represents an overweight
or overfilled bag of cement, while 90 represents an ideally filled bag. If any of these values ever
need to be changed, we only need to change one line of code! Therefore, by coding to a variable,
we can quickly and accurately change values with minimal effort and cut down on the codebase’s

overall technical debt.

Self-documenting code is just one way of documenting a codebase. Though it is true that a
well-written codebase should be able to guide a developer, sometimes we need a little more. In

the next section, we’re going to look at writing proper code comments.

Code commenting

Another form of documentation that will help your codebase last the test of time is commenting.
There are many PLC and traditional codebases that have no comments. These programs will
usually take extra time for developers new to the codebase to understand, and it can ultimately

mean that the codebase will become unmaintainable after a while.

Logically named program components can only go so far. Many times, extra context must be given

to explain the underlying logic for the code. This is where comments come into play. Comments

Chapter 6 161

are very important for software development; however, commenting is a bit of an art that must

be practiced. To start, let’s look at what a good comment is!

Good comments

Comments are notes in the source code for yourself and other programmers. Comments should
be short, simple, to the point, and, above all else, provide context. A comment’s job is to provide

the reader with a quick summary of what a block of code does. For example:

IF speed >= motorSpeedCutOff THEN
motorOff := TRUE;

ELSIF speed < motorSpeedCutOff THEN
motorOff := FALSE;

END_IF

The comment in this code block is one line and directly conveys what the code does. It can be
argued that using more descriptive names, such as conveyorMotorSpeedCutOff, would serve the
same purpose, and it could. Regardless, the comment provides a clear and concise description of
the purpose of the code, and it removes any mental gymnastics that a reader may have to perform
to understand its purpose. Though code comments can reduce technical debt and add context to
code, they can be somewhat detrimental if not implemented properly. In the next section, we’re

going to explore what a bad comment looks like.

Bad comments

Justbecause your code has alot of comments doesn’t mean thatitis well documented. Too many
comments can be as detrimental to a codebase as too few. Too many comments can clutter up

the source code and overwhelm the reader. Here is an example of a poorly documented program:

IF speed >= motorSpeedCutOff THEN

turn the motor off
motorOff := TRUE;
ELSIF speed < motorSpeedCutOff THEN

speed turn the motor on
motorOff := FALSE;
END_IF

162 Best Practices for Writing Incredible Code

The two comments in the IF statements are completely unnecessary. The self-documenting
nature of the variable names provides enough information to the code reader as to what the IF
statements do. The explanatory comments do little more than bloat the code file and possibly
confuse the code reader. In a situation like this, it is best to remove them. As can be seen, there is
a bit of a balancing act between having just enough code comments to be productive while not
overloading the code reader. Proper code commenting takes practice, and many organizations

will have guidelines on code commenting.

Note

\G/‘ One exception to this rule is education. Many times, code will be heavily commented

for technology documentation purposes or classroom demonstrations.

Code documentation is one crucial way of lowering technical debt and creating quality codebases.

Regardless, one codebase killer that often pops up in automation programs is dead code!

Understanding and eliminating dead code

Dead code is, without a doubt, the cancer of codebases. It adds nothing to the program but, like
a vampiric leech, consumes vital resources from the PLC. So, what is dead code? Dead code can
best be summarized as code that adds nothing to the program. This could be just adding two
numbers together for no reason or having a function that runs a bunch of lines of code but con-
tributes nothing to the overall success of a program. An example of dead code can be viewed in

the following pseudocode:

Input age
Input temperature
age = age
If temperature > 100 Then
Turn on fan
Endif

The first line takes an input for age, and later, the value of age is reassigned to age. As can be
seen, the reassignment does nothing for the program; the operation is essentially useless. If we

removed the variable, the program would in no way be impacted.

Chapter 6 163

If you have code that runs but contributes nothing, you can run into the following issues:

e Raise overall complexity of the program (increase technical debt)
e Introduce security risks
e Usevaluableresources such as storage, memory, execution time, and so on unnecessarily

e Makeitdifficult for new developers to understand the code

There is another concept called unreachable code that is sometimes confused with dead code.
Unreachable code is code that exists in a codebase butis never executed. This could be functions
that areimplemented but never called, branches in a control statement that can never be reached,
or any other type of code that will never run. Much like dead code, unreachable code is a cancer
that, over time, will degrade the quality of the codebase. Many development systems will typ-
ically alert you to the presence of both unreachable code and dead code. If you see a warning
about either of these during the compilation process, it is important that you fix these issues as

quickly as possible.

Dead code and unreachable code often contribute to what is called code rot. Code rot is essen-
tially the decline in quality of a codebase in relation to complexity, support, maintenance, and
so on. This degradation is caused by several issues, such as the aforementioned issues, outdated
dependencies, poor maintenance, or a general lack of documentation. One way to help fight code

rot is to keep it simple!

Keeping it simple

In software engineering and engineering in general, there is a principle that should always be
followed. This principle is Keep It Simple, Stupid (KISS). As the name suggests, the KISS meth-
odology encourages engineers to avoid over-complexity. This is often a concept that is counter-
intuitive for many new programmers. As stated earlier, it is a common trait for many new team
members to want to show off their chops and make a good impression, especially when their
team leadership is metric-oriented and sees complexity as something that should be admired.
However, this can drastically overcomplicate a PLC program and send it to the cyber trash heap

well before its due time.

An example of an anti-KISS methodology is the following:

userAge : INT
age : INT
Input age

userAge = age

164 Best Practices for Writing Incredible Code

If userAge <= 21 Then
User not allowed
Else

Allow user

In this case, the userAge = age line is completely unnecessary. This line does contribute to
the overall operation of the program and does run, so it’s not dead or unreachable code, but it
is overall needless in terms of engineering. It would make much more sense to just use the age

variable instead of making userAge.

This is just one very simple example of where the KISS methodology mindset should be applied.
In real life, KISS violations may not be that obvious. The biggest violator of KISS usually comes
in the form of over-engineering. Common things to look for that can increase the complexity of
code are as follows:

e Using unnecessary libraries

e Bloating the codebase

e Adding unnecessary parts

These are just a few points that can increase complexity; however, there are many more. As a

good developer, you should be able to spot these and eliminate them in the almighty code review.

What to look for in a code review

Most quality organizations will have their employees conduct what’s called a code review. A
code review is like a peer review for code. The goal of the exercise is to ensure that your peer’s
code makes sense, works, and has no major flaws that could impact the overall quality of the
codebase. It is typically a good idea for any organization to have its developers implement code
reviews. Code reviews will help developers grow and ensure that best practices are followed and

the overall technical debtis at a minimum.
When you’re performing a code review, there are a few things you want to keep an eye out for:

e Poor naming conventions: The first thing that I like to look at are names. When con-
ducting a code review, I want to ensure that attributes are named properly and follow the
correct casing and naming schemas. For instances where the program uses camel casing
for variable names, you want to ensure that the programmer didn’t use snake casing for
any of them. Outside of that, you want to ensure that the programmer is using the proper
pre- and post-suffixes to denote attributes. If the program is using FB at the end of each
function block name, forgetting to put the suffix at the end of a function block can confuse

future programmers.

Chapter 6 165

e Logical flow and structure: Ideally, you want to check the flow of a program to ensure
thatit makes sense. Evaluating your own logicis a lot like proofreading your own papers,
and it helps to have a second or third pair of eyes on it. When you are reviewing someone
else’s code, you want to ensure that their program is structured well, has no random jumps,
flows neatly from top to bottom, and makes sense overall. If something doesn’t sit right

with you, it probably won’t sit right with others in the future.

e Dead and unreachable code: You want to keep a keen eye out for dead and unreachable
code. As stated before, dead and unreachable code can and usually will degrade a code
project. If the compiler does not pick up dead or unreachable code, it’s your job as a
reviewer to do so! You want to pay particular attention to project files that are not used,

such as function blocks, methods, GVLs, structs, enums, and functions.

Note

\/V Some standards require default branches even if they don’t always run or run very
seldom. This is not true dead or unreachable code because it can still run under

certain conditions.

e Poor comments/documentation: Comments can bloat a codebase very easily. You want
to ensure that everything is logically documented. That is, what needs to be commented
is, and unnecessary comments are either shortened or removed. When it comes to code
comments, it’s better to be over-documented than under-documented, butin all, itis a
balancing act. You also want to pay attention to the self-documentation aspects of the
codebase. You want to ensure that the program itself reads like a storybook. That is, you
can look at the code and get a good idea of what the code is doing just by looking at it.

e Over-engineering: Over-engineering can kill a project just as easily as under-engineer-
ing. When reviewing code, keep KISS in mind. You want to ensure the program does its
job, but you don’t want to go overboard. You’ll want to keep an eye out for things such
as variables that are slated for future use, unnecessary attributes, and so on. Another key
aspect to look out for is attributes such as function blocks, methods, and general functions

that are a little too specific.

Learning how to conduct a good code review takes time and practice. There are many strategies
that can be used to ensure a clean code review. For example, some teams will create checklists
while others will use automation tools to assist in the process. Before we getinto our final project

and conduct a code review, we're going to look at some things that we should never do.

166 Best Practices for Writing Incredible Code

Things to avoid in software engineering

Just as there are best practices, there are also bad practices. In this section, we’re going to explore

a few bad practices that are common in the software/automation industry.

Fitting a problem into a solution

Not too long ago, it was not uncommon to see a lot of fly-by-night companies that claimed they
were going to change the world with their product. This was mostly in the traditional side of
software engineering, but the automation industry was equally guilty of this. At a high level, it
was not uncommon for a company to go to a customer and try to tailor a customer’s problem to
fit their product. Thisis a terrible practice, as the company’s product often got a reputation for not
working, and the customer’s problem was not solved, or atleast not adequately. This issue is not
unique to corporate madness; engineers often do this too at the lower levels of development. Itis
not uncommon for developers to want to use what I like to call resume technology for a project. In
these cases, developers will pick whatever the hottest technology is and, regardless of whether it’s
truly a good fit for the project or not, use it for the project. The resultis usually a hacked-together
mess that will have a limited lifespan. To avoid this, only use a specific technology if it makes
sense to do so and not because it’s the new, cool kid on the block. Using the wrong technology will
create a lot of technical debt and, in the worst-case scenario, sink the project altogether. Along

these lines is another common problem: using software as a means to fix hardware.

Fixing hardware with software

Automation engineers typically have a hardware-first approach to machine building. As stated
before, software is typically treated as a second-class citizen and as a means to drive hardware.
This is the worst philosophy a PLC programmer can have. Software needs to be thought of as the
brain of a machine. It’s easy to tout that your machine uses the latest gearboxes, best encoders,
and fastest PLC that money can buy, but without software, all that cool hardware is nothing more
than a paper weight. Software drives the hardware. Without software, you have nothing but
expensive circuit boards. Under no circumstances should software ever be used to compensate
for malfunctioning hardware. It is not uncommon for code to be changed to accommodate bad
encoders, malfunctioning power supplies, and many other things. This is the definition of tech-
nical debt. This practice will kill your codebase by making it unmaintainable. If you have broken
hardware, fix the actual problem; don’t compensate for it at the expense of the software. Finally,

the last bad practice that we’re going to explore is the code review mentality.

Chapter 6 167

Having only one code reviewer

Code reviews are a way to ensure code quality, help teammates grow, and promote general col-
laboration. However, they can also get very political. If there is only a single coder reviewer and
they like another teammate, chances are they will have a higher probability of approving their
code. On the other hand, if a code reviewer does not like another teammate, they will probably
be more critical of that person’s code and reject it more often. Either way is counterproductive

for the organization.

Typically, it is best to have the whole group review the code, or at the very least, use a minimum
number of reviewers. Having more than one pair of eyes on a codebase will help pinpoint more
issues, provide checks and balances, and allow others to learn from the mistakes and successes
of others. On top of that, code reviews can get bottlenecked really easily if only one person is per-
forming them. In all, having only one reviewer can stifle a team due to politics, limit the growth

of others, and cause delays.

By this point, you should have a decent overview of some best and bad practices. This means that

we can move on to our final project and perform a simulated code review.

Final project: Performing a simulated code review

For the final project, we’re going to use what we learned in this chapter and apply it to a simulated

code review. The code we’re going to explore is as follows:

1 Function Block motorControllerFB
2 XAxis : int

3 YAxis : int

4 Method motor_on()

5 Move to XAxis

6

Move to YAxis

7 Function Block power_supply

8 ps : bool
9 Method turnMotoroOn()
10 ps = true //this turns the power supply on

11 Method turnMotorOff()
12 ps = false //this turns the power supply off

168 Best Practices for Writing Incredible Code

13 PLC PRG

14 If btnl = true then

15 Turn on power led

16 PowerSupply.TurnMotoroOn()
17 1+ 3

18 If btnl = false then

19 Turn off power led

20 Powers_supply.TurnMotorOff

Based on what we have explored thus far, there are a number of issues here. In short, we have
quite a bit of technical debt. First and foremost, there are casing issues. Some attributes use camel
casing, some use Pascal casing, while others use snake casing. This is a major issue as it raises
technical debt. Another quick look at the function block names shows that some (line I) are using
the postfix FB, while another function block (line 7) is not. This will cause inconsistencies and

possible confusion for other developers.

The first function block is passable in terms of the code. The code is clear, and the operations are
logical. However, with the power supply function block, there are a few things that we need to
note. The variable names are not reflective. The name ps (line 8) is not clear. For this codebase,
a better name would be powerSupply or something akin to that. If we changed the name of that
one variable, we could eliminate the comments on lines 10 and 12, which, as of now, aren’t totally

necessary because we can still kind of infer what the lines of code do.

The PLC_PRG routine is the worst of all three attributes. First, having two If statements (lines 14
and 18) is overkill and can lead to issues down the road. A better option would be to convert the
second If statementto an elif command. This will ensure that only one of the control statements
can be on at a given time. As of now, a weird edge case could potentially trip up the program.
Second, there are some issues with the method calls. In each If statement, they are spelled dif-
ferently. This means that either the developer did not test the code, or something was cached on

their system. Finally, there is a line of dead code in the first If block (line 17).

Summary

This chapter has been about best practices and lowering technical debt. To lower technical debt,
we explored best practices such as conducting code reviews, naming conventions, commenting,
casing conventions, dead code, and more. There is alot involved in developing quality code, and
what was explored here were just some common code issues that could arise and sink a codebase.
These best practices are very important to understand because, in the next chapter, we’re going

to explore creating libraries.

Chapter 6 169

Questions
What is the KISS methodology?

—_

What is dead code?

What is unreachable code?

If you needed a variable for the elbow joint of a robot, what would be a good name?
What does a good comment look like?

What does a bad comment look like?

When should you use a variable?

What is camel casing?

© ® N A W

What is Pascal casing?

—_
o

. Whatis snake casing?

Join our community on Discord

Join our community’s Discord space for discussions with the authors and other readers: https://

packt.link/embeddedsystems

https://packt.link/embeddedsystems
https://packt.link/embeddedsystems

Libraries: Write Once, Use
Anywhere

Developing an application will typically involve integrating many different functionalities into one
project. For example, if you consider a modern industrial application, it will often be a composite
of many different components from many different vendors. Writing custom code to properly in-
teract with all these third-party devices will, at the very least, be a daunting and time-consuming
task. At worst, it could be impossible to accurately figure out how third-party devices operate to
programmatically interact with them. To remedy this problem, the device manufacturer or other

parties will often create what are called libraries to integrate modules into a project.

Almost all modern software projects, whether traditional or industrial automation applications
such as PLCs or HMIs, use libraries. In fact, it is nearly impossible to build a modern application
of any kind without the assistance of libraries. Libraries are very powerful programming tools
that can drastically reduce the complexity of a project, as well as the overall development time

needed to pull the project off. To master libraries, we will explore the following:

e Whatis alibrary?

e Libraries versus frameworks

e Installing alibrary

e Usingalibraryin Ladder Logic
e Distributing a library

e Guiding principles for developing a library

To round out the chapter, we’re going to create a simple library for a robot.

172 Libraries: Write Once, Use Anywhere

Technical requirements

As per all previous chapters, this chapter will require nothing special other than a copy of COD-
ESYS. If you have skipped ahead and have not read the past chapters, you will need to download
and install a copy of CODESYS.

The code for this project and all other examples can be found at the following URL: https://
github.com/PacktPublishing/Mastering-PLC-Programming-Second-Edition/tree/main/

Chapter%207.

Investigating libraries

A library is a piece of software that is designed to provide functionality for another project. In
common programming lingo, a library is often called a dependency because the main programis
dependent on the code that resides in the software module. This may sound complex, but under
the hood, a library is a collection of function blocks and other attributes that are designed to cut

down on new code.

In a very basic sense, a library is a code module that can be imported into a project. These code
modules are used to help developers do many things, such as cut down on redundant code that s
used across different projects, reduce bugs, integrate niche functionality into a project, and much
more. Essentially, when you’re working on a project, you want to focus on accomplishing the
project. In other words, if you’re working on an industrial 3D printer that needs to read Comma
Separated Values (CSV) files, you want to focus on building the 3D printer, not on a program
that can read CSV files. This is where libraries come into play. Libraries allow you to add certain

functionality to your code without losing focus on the main project.
Common uses for libraries include the following:

e To cut development time by using prebuilt and tested code
e To interface with custom or proprietary components
e Toaugment existing code with niche functionality by using third-party libraries

e To easily distribute code to other developers

https://github.com/PacktPublishing/Mastering-PLC-Programming-Second-Edition/tree/main/Chapter%207
https://github.com/PacktPublishing/Mastering-PLC-Programming-Second-Edition/tree/main/Chapter%207
https://github.com/PacktPublishing/Mastering-PLC-Programming-Second-Edition/tree/main/Chapter%207

Chapter 7 173

As stated before, libraries are the backbone of any modern programming language. For many
programming languages, such as C++, libraries are required for any new application. For example,
for most C++ programs, the Standard Template Library (STL) must be imported to use many of
the basic features of the language. Libraries in CODESYS and other similar systems are a bit more
optional compared to languages such as C++; however, they are no less important. Libraries can

be responsible for several things, and some common examples include the following:

¢ Communicating with IoT devices

e Communicating with hardware interfaces

e Integrating machine learning/artificial intelligence
e Using communication protocols and conversions

o Interfacing with cloud service providers

There are many more uses for libraries. To get the most from libraries, there is a key distinction

that needs to be made between a library and what’s called a framework.

Libraries versus frameworks

In everyday programming lingo, the terms library and framework are used interchangeably;
however, the two terms refer to two different things. To be a quality programmer of any kind, it
is very important to understand the difference between the two types of modules. To begin this

exploration, we’re going to explore what a library is at a fundamental level.

Understanding libraries

As was alluded to earlier, a library is a code module that augments your code. In other words, a
library is a collection of prebuilt function blocks and attributes that your program can call. If
you were to view a library through the eyes of biology, a library can be thought of as a perfor-
mance-enhancing drug for athletes. A library does not require any specific structure and can be
used in any type of application. This is in contrast to the other type of code module, which is

called a framework.

174 Libraries: Write Once, Use Anywhere

Understanding frameworks

A framework is like the skeleton of a person or animal. The purpose of a framework is to provide
the necessary structure to ensure your program does a certain thing. For example, a common
application for a framework in a traditional app would be the Django framework for Python. This
framework essentially turns the Python language into a web server programming language. A
framework will provide all the necessary scaffolding for your program to do a certain task. Com-
pared to a library, a framework can restrict what you can and cannot do. Your custom code will
serve as little more than the necessary straps to ensure the framework’s tasks are carried out. A
common theme that you will hear when discussing frameworks with other developersis that the
framework will morph the language into what can be thought of as a derivative or flavor of the

primary language. Overall, where your code calls a library, a framework calls your code.

In terms of automation, you are much, much more likely to encounter a library than a framework.
Though you can, as we will see later on in the chapter, build your own custom library, you are
much more likely to import a library from a source. So, in the next section, we’re going to practice

importing a library into a program.

Importing a library

We have been using the term third-party library quite a bit. Generally, the context for the term,
at least for this book, is a library that is distributed by a person, organization, or so on. These
libraries can usually be downloaded from sources such as GitHub, vendor websites, or any other

download source.

In terms of PLC programming, many libraries come from a vendor. However, you can still get
libraries from sources such as GitHub. If you opt to use a library that you get from a source such
as GitHub, you mustimport it. To demonstrate this, we are going to use a custom library that has
one function block that consists of one method, which adds two numbers. This is a custom library
that was developed for this book. The library can be downloaded at the following link: https://
github.com/PacktPublishing/Mastering-PLC-Programming-Second-Edition.

The library is named adderLib. For this example, you will need to pull down the library to your

development machine.

https://github.com/PacktPublishing/Mastering-PLC-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-PLC-Programming-Second-Edition

Chapter 7

175

Installing a library

The following are the steps necessary to install a library. The adderLib library is written using

CODESYS and will only work with that system. Also, the following steps are for CODESYS; if you

find yourself using a different development system, the steps may differ, but the spirit of the op-

eration will likely be similar. Itis best to consult the documentation for the system of your choice.

Note

C\, The library for this tutorial will be included in the GitHub repo; however, as new
2

versions of the system are released, it may be incompatible with the version you’re

using. If you find yourself with an incompatible version of CODESYS, skip to the

Using a library in Ladder Logic section of this chapter to build a library you can import.

The steps for importing a library in CODESYS are as follows:

1. Create anew project, click on the Tools menu, and select Library Repository..., as shown

in Figure 7.1:

Tools

Window Help
CODESYS Installer...

Library Repository...

=l=5am

Device Repository...
Visualization Style Repository...

License Repository...
OPC UA Information Model Repository...
License Manager...

Device License Reader...

Customize...
Options...
Import and Export Options...

Scripting »
Edge Gateway 3
Miscellaneous 2

Figure 7.1: Tools drop-down icon

176 Libraries: Write Once, Use Anywhere

When you click the icon from Figure 7.1, you will be met with a screen similar to this:

m Library Repository

Location System
(C:\ProgramData\CODESYS\Managed Libraries)

Installed Libraries

Company (All companies)

Intern

BB

8 Group by category

Library Profiles...

Figure 7.2: Library repository screen

Edit Locations...

Close

2. Onceyou see this screen, click on the Install button. This will open a normal File Explorer

window.

3. Navigate to where you downloaded the library and select it.

4. Onceyou select the library, you mustimportitinto the project. To import the library into

your project, click on Library Manager in the project tree.

Libraries used in application 'Device.Application'

MName
#-[B) 3slicense = 3Slicense, 3.5.20.0 (CODESYS)

B =ddertib, 1.0.0 (nfa)

+ |E| BreakpointLogging = Breakpoint Logging Functions, 3.5.17.0 (35 - Smart Software Solutions GmbH)
+ |E] CAA Device Diagnosis = CAA Device Diagnosis, 3.5.21.0 (CAA Technical Workgroup)
: @ IoStandard = IoStandard, 3.5.17.0 (System)

----- |E] standard = Standard, 3.5.18.0 (System)

Mamespace

_35_LICENSE

adderLib

BPLog
DED
loStandard
Standard

Effective Version
3.5.20.0

1.0.0

3.5.17.0

3.5.21.0

3.5.17.0

3.5.18.0 o

Figure 7.3: Library Manager

Chapter 7 177

5. Once you see this screen, click on the Add Library button, as in Figure 7.4:
||(ER Add Library
Figure 7.4: Add Library button

6. Expand the (Miscellaneous) dropdown and select the entry called adderLib:

Add Library *

|String for a fulltext search...

Company
adderLib nfa
CODESYS Commen Library Template CODESYS

Figure 7.5: Library selection

7. Once you select the library and click the OK button, you should be all set up.

8. To use the library, navigate to the PLC_PRG file and create the following variables:

PROGRAM PLC_PRG

VAR
Addition : additionFB;
Result : INT;

END_VAR

You will also require the following logic:

result := addition.sum(33,33);

When you run the application, you should see an output similar to the following:

Device Application.PLC_PRG

Expression Type Value
+ ¢ addition additionFE
@ result INT 66

Figure 7.6: Library output

178 Libraries: Write Once, Use Anywhere

This is a general way to install a third-party library. This library was written and demonstrated
in Structured Text. Just because a library is written in one programming interface doesn’t mean
you’re married to that language. In the next section we’re going to use a Structured Text library

in Ladder Logic

Using a library in Ladder Logic

It’s no secret that Ladder Logic (LL) still rules the automation programming world. Though
Structured Text (ST) is a vital language and is slowly taking over the automation programming
landscape, we still need to be able to integrate the two. For this example, we’re going to take a
library written in ST and use it in an LL program. To follow along, create a new Ladder project
and download and install the LadderAdderLib library that is included in the GitHub repo. You

will need to import it with the same steps that we used before.

The code for the library is simple. The project is simply a function block that adds two numbers
and has a method named diff that subtracts two numbers. The only attributes for the main
function block (AdderFB) are two input variables called a and b, and a third called sum. The code

for AdderFB is as follows:

FUNCTION_BLOCK AddFb
VAR_INPUT

a : INT;

b : INT;
END_VAR
VAR_OUTPUT

sum : INT;
END_VAR
VAR
END_VAR

While the logic is simply this:

sum := a + b;

For the diff method, the variables will be as follows:

METHOD PUBLIC diff : INT
VAR_INPUT
a : INT;

Chapter 7 179

b : INT;
END_VAR
The subtraction logic for this method will be this:
diff := a - b;
To use the library in the main or consumer project after you install and import it, simply use the
following variables:

PROGRAM PLC_PRG

VAR
adder : AdderFB;
diff : INT;
a : INT := 500;
b : INT := 100;
END_VAR

In the Ladder Logic section of the PLC_PRG file, navigate to ToolBox, add two Box components,

and configure them to match Figure 7.7:

1 adder
AdderFB
a—a sum [—
bE—b
2 adder
AdderFB.diff
a—a diff —diff
b—b

Figure 7.7: Configured library function block

180 Libraries: Write Once, Use Anywhere

Once you have all that configured, run the project, and you should be met with the output in

Figure 7.8:
Device Application.PLC_PRG
Expression Type Yalue
+ @ adder AdderFE
@ diff INT 400
a INT 500
% b INT 100
1 adder
AdderFB
a a sum
b b
2 adder
AdderFB.diff
a[[s500 f—a diff [-diff
b b

Figure 7.8: Library output

Now that we have a basic understanding of how to implement a library, we can create one our-

selves. To begin, let’s investigate the architectural principles of creating a library!

Guiding principles for library development

Developing an effective library can be tricky. Where you’ll have a clear-cut application in mind
when developing a PLC program for a machine, you’ll have to make certain assumptions when
developing a library. You will not know ahead of time who will use the library, how they will use
it, or what they will use it for. Hence, creating a good library can be a very tricky and daunting
task. There are no clear-cut ways to create a perfect library, but there are a few rules thatI came

across that have helped me develop some decent ones in the past.

Chapter 7 181

Rule 1: Remember KISS

The first rule of any software project, especially a library, is to keep it as simple as possible. When
creating a library, you want to ensure that you're following the KISS methodology. A complex
library can become impossible to use; therefore, it is imperative to ensure that the library is as
simple as possible. As we will see with Rule 3, a simple way to reduce the complexity of a library

is to employ the Facade pattern to hide complexity.

In terms of the KISS methodology for libraries, the following are a few guardrails to help keep it

simple!

e Single responsibility: Much like a function block, a library should do one thing and one
thing only. If you pack too much functionality into a library, that can make it very hard to
use. This means if you're making a library for a motor drive, the library should only have
exposed functionality that supports operations to control the motor. Adding functionality
to support things such as temperature sensing or something else thatisn’t motor control

into the library can complicate it beyond use.

e Remove useless functionality: A good cliche to remember is if you don’t use it, lose it. A
killer of any library is junk functions or function blocks that serve no real purpose. This
is a common problem for many libraries. Having useless or redundant attributes can kill

the usability of a library, as it can cause confusion about how to use it.

e Usereflective naming: Do not get clever with the names of attributes. Ensure that each
public attribute’s name clearly reflects what its purpose is. Going off the rails with aname

can cause a lot of confusion and overcomplicate the usage of the library.

e Limit dependencies: A library will often depend on other libraries to operate. These de-
pendent libraries are often referred to as transient or downstream dependencies. These
dependencies can pose many problems because the end user will need to have them for
the library to operate. This means that if the end user does not have access to the correct

transient libraries you used to create the module, it is essentially broken.

With this rule in place, we can move on to abstraction and encapsulation!

Rule 2: Abstraction and encapsulation

Going with the theme of removing the possibility for your end user to shoot themselves in the foot,
all of the function block attributes should be well encapsulated with a decent level of abstraction.
In short, when developing a library, itis very important to show the consumer the absolute min-

imum they need to use the module. My general rule of thumb for all attributes, especially ones

182 Libraries: Write Once, Use Anywhere

that are in a library, is if I'm not planning on calling it from outside the function block, it gets an

access specifier of PRIVATE.

Due to the nature of the library and the wide variety of applications, it is important to hide as
much of the inner workings as possible. Generally, I like to teach my students to write a program
for the most inexperienced person in the room. This principle is even truer in library develop-
ment. Expanding on my general rule, I usually tend to create what I like to think of as an entry
point for the methods. This entry point will have all the necessary arguments and return types;
however, if there is dependent logic that breaks my one-sentence rule, I will break that out into
other PRIVATE methods and use the entry point to orchestrate them. This will create a system
where an outside consumer will only have to make one call to accomplish a task. Sometimes this
will be possible, but other times it won’t. Regardless, in my experience, it is best to have a single
method call that can accomplish the task than to burden the end user with multiple other method

calls to accomplish the same task. This principle kind of leads to the concept of design patterns.

Note

\G/‘ This is a major reason why it’s important to think of abstraction and encapsulation

in terms of hiding function block components! It helps clear clutter.

Rule 3: Use the Facade pattern liberally

When it comes to library design, the most useful pattern, in my opinion, is the Fagade pattern.
This pattern can greatly reduce the complexity of a library when it comes to its overall usage. For
example, if you're working on a library for a robot, it may require a complex operation to start,
turn off, or operate the machine. Since the operations are complex, it can be very hard for the
programmer to remember the correct sequence to carry out a particular operation. This is where

the Facade pattern comes into play.

Consider the following pseudocode:

Function Block Starter
Method battery()
Method ledOn()

Function Block Twist
Method motoron()
Method rotateMotor()

Chapter 7 183

For a program like this, all the methods will need to be called at some point to move the robot. As
can be deduced, this could be hard to pull off, especially when the operations are more intricate
and complex. The Fagade pattern can be used to help alleviate some of the complexity. In short,

a Fagade pattern could be employed, like the following:

Function facade:

Method turnOnRobot():
Starter.Battery()
Starter.ledOn()

Method moveRobot():
Twist.motoron()
Twist.rotateMotor()

With this setup, if the programmer needs to move the robot, all they have to do is call the
turnOnRobot method and then the moveRobot method. In other words, we went from needing

to call four methods to only two, which are easier to remember and use!

Rule 4: Documentation

You could develop the greatest library in the world; however, if it is not documented, it will be
aboutas good as useless. Itis important to remember that a library is typically a compiled project,
and in many (especially older or simpler) systems, ordinary comments will not be visible to the
consumer. You must use other means to communicate to other developers how to properly use
the library. There are many ways to document the proper usage of a library, including custom
documentation such as PDFs, websites, GitHub pages, and so on. You can also provide documen-
tation in CODESYS itself.

There are a few things that must always be documented in a library, which are as follows:

e Libraryinformation: Itis necessary to provide information on what the library is designed

to accomplish.

¢ Function blocks: You will want to provide a simple synopsis of the function block.

e Methods: You will want to provide a synopsis of what the method does and provide in-
formation such as return types and arguments.

e Variables: You will also need to document the exposed function block and method-level

variables. You will want to provide information on what the variables are meant for.

184 Libraries: Write Once, Use Anywhere

All these attributes can be easily documented in CODESYS with minimal effort. In terms of pro-
viding code documentation, there are many ways to document things; however, the syntax that

I usually gravitate towards is the following:

e Declaration header: Denoted with ///. The triple slash is typically the safest to use for
declaration headers because these comments will always show up in the documentation,
and by default, at a minimum, you want this feature notated. I also recommend keeping

these features to a one-sentence summary.

e Member/attribute header: Denoted with (*<comment>*), this is a way of creating a
multi-line comment, which is often useful if an in-depth explanation of the attribute is
needed. You can also use the standard //; however, to use either syntax, the system must

be configured to read them.

Note

\/V I’ve never been a fan of using // in my documentation. I typically advise using mul-
tiline comments for attribute documentation because 1) it’s more flexible, and 2) it

makes it easier to write more detailed descriptions of the attributes.

To demonstrate this, let’s modify our example library.

Open the LadderAdderLib library project and modify the code to match the following:

FUNCTION_BLOCK AdderFB
VAR_INPUT
a : INT; (*Input 1 INT*)
b : INT; (*Input 2 INT*)
END_VAR
VAR_OUTPUT
sum : INT;
END_VAR
VAR
END_VAR

Chapter 7 185

Once you are done with that, import the library into an example project. When you do this, dou-
ble-click on the library in Library Manager, and you should be met with something similar to
the following:

m Library Manager X =
(KR Add Library 3 Delete Library | 57 Properties 73 Details | 5] Placeholders " Library Parsmeters... [ffff Library Repository @ Icon Legend... 2] Summary... @ &

Libraries used in application 'Device Application’

MNarme Mamespace Effective Version
- [E) 3ticense = Hlicense, 3.5.20.0 (CODESYS) _3S_LICENSE 3.5.20.0
£ Lﬂ BreakpointLogaing = Breakpoint Logging Functions, 3.5.17, - Smart Software Solutions GmbH) BPLog 3.5.17.0
+ @ CAA Device Diagnosis = CAA Device Diagnosis, 3.5.21.0 (CAA Technical Workgroup) DED 3.5.2L.0

B 1ostandard = loStandard, 3.5.17.0 (System) IoStandard 3.5.17.0
@8 LadderAddertib, 1.0.3 (na) LadderAdderlb 1.0.3

- B} standard = Standard, 3.5.18.0 (System) Standard 3.5,18.0 L}

Contents of selected library 'Ladder&dderlib, 1.0.3 (na)' Details about selected library element ‘AdderFB’
=l LacterAddert, 1.0.3 (ra) v| «o Inputsjoutputs [8] Graphical (7] Documentation

= 5] adderrs

& s FUNCTION_SLOCK AdderFB
m di

Name Type Inherited from Address Initial Comment

Figure 7.9: Method documentation example

The takeaway from the screenshots is that the triple slash (///) will generate a general message
at the top. In other words, the triple slash is more of a general attribute description, while the

parentheses are used more for the general description of variables.

There are other ways to add documentation, such as putting logically related function blocks
into folders and documenting what the module(s) are meant to do. This is accomplished by
right-clicking the folder and then clicking on Properties, then finally, selecting Documentation,

which will render the following:

186 Libraries: Write Once, Use Anywhere

Common Documentation Buid Access Control

This function block has one method called sum that will add two numbers and return the &
sum of those numbers,

Figure 7.10: Folder documentation window

When you click the OK button, the documentation will be generated. As with the other meth-
ods, you will be able to view the documentation after the library has been imported. To view the

documentation, click the Library Manager icon again and click on the folder. You should see
something similar to the following screenshot:

=) example b, 1.0.2 (book) | [?] Documentation
=) addition

Folder addition
= EI addition @
4 sum eturn the

This function block has one method called sum that will add two numbers and r
sum of those numbers.

Figure 7.11: Folder documentation

Chapter 7 187

The final aspect that needs to be documented is the general information about the library, or, as
is commonly known, metadata. To do this, you will click the Project Information section in the

library project area, which will generate a popup like the following:

File Summary Properties Statistics Licensing

Company book
Title example_lib
Version 1.0.2 () Released

Library Categories
Default namespace
Placeholder

Author

Description

The fieldsin bold letters are used to identify 2 library.

("] Automatically generate 'Library Information’ POUs

(] Automatically generate 'Project Information’ POUs

|- oK | Cancel

Figure 7.12: Library documentation

Arguably, the two mostimportant fields are the name and the version. The name is important for
obvious reasons; the end user needs to know what they’re working with. The other important
piece of information is the version number. Quality version numbers use a concept called semantic
versioning, which signals to the user if the version of the library they are using is compatible with

their system. Therefore, the next section is going to look at how to properly version your library.

188 Libraries: Write Once, Use Anywhere

Semantic versioning

One of the most important things you need to consider when developing a library is the version
number. Put simply, the version number should follow a <major.minor.patch> scheme. This
scheme is called semantic versioning. The meaning of each part of the scheme is summarized
in Table 7.1:

Version components Meaning

Major Changes will break backward compatibility
Minor Changes will add backward-compatible features
Patch Changes are backward-compatible bug fixes only

Table 7.1: Semantic versioning scheme

Before we move on, it is important that you understand the principles that were explored in this
section. Developing a library for deployment is not like developing a normal program. Things
must be named, documented, and architected well. Above all else, the library must be easy to
use. Once you understand these principles and have a grasp on them, we can attempt to create

a simple library in our final project.

Final project: Building a custom library

For our final project, we’re going to build a library for a robot. This library is going to be simple
and easy to implement; however, the final aspect of the project will be for you to clean it up and

make it easy to use! Therefore, to begin, let’s explore the needed requirements.

Requirements

For this project, we are going to need a simple library that can perform the following functions:

e Home the motor

e Turn the motor on
e Turn the motor off
e Stop the motor

e Position the motor

Chapter 7 189

This will be a very simple library and will not require complex architecture. For a library as simple
as this, we don’t have to worry about complexities such as design patterns; however, the Fagade

pattern can make the library easier to use. So, let’s break down the methods we will need:

e Zero: Will zero out the motor

e Home: Will return the motor to its home position

e Turn on the motor: Will zero out the motor and put the motor in a standby state
e Turn off the motor: Will zero the motor and turn the motor off

e Stop the motor: Will halt the motor without zeroing it out

e Position the motor: Will move the motor to a position

Implementation
The first thing we need to do is to create a new project; however, unlike creating a normal project,
we are going to do the following:
1. Select Libraries and Empty library, as in the following screenshot:
2] New Project

Cateqories Templates

]__j Projects-

CODESYS CODESYS CODESYS Empty library
contai... interfa... library

External
CODES...

An empty library

MName Final Project Library

Figure 7.13: Library creation

190 Libraries: Write Once, Use Anywhere

There are other ways to create a library with a full structure, such as by selecting CODE-
SYS library. However, this option will give you a full project with potentially unnecessary
files and structure. You can opt to use this if you would like, but for now, use an empty

library to remove bloat.
2. After you complete that step, you should see a project tree like the following:

POUs
= Fnal Profect Library
f} Project Settings

Figure 7.14: Library project tree

3. Next, right-click Final Project Library and add a function block named MotorControl
with the methods in Figure 7.16. Set the return type of all the methods to BOOL and the

access specifier to PUBLIC.

= MotorContral (FB)
E:‘ homeMotor
ﬁ?ﬂ positionMaotor
ﬁ?ﬂ stopMotor
ﬁ?ﬂ turnMotorOff
ﬁ;“ turnMotorCn
ﬁ;“ zeroMotor

Figure 7.15: Library project tree

4. Now that we have all the methods set up, we can start implementing the code. The first
thing that we need to do is declare a variable that holds the motor’s positions. For this,

we will need to go into the MotorControl function block and set a variable, as in the

following code:

FUNCTION_BLOCK MotorControl
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
motorPosition : INT;
motorOn : BOOL;
END_VAR

Chapter 7 191

5. Next, we will implement the zero method with the following code:

motorPosition := 0;

6. This will be all that is required for this method, as no internal variables will be set.
7. Next, we will implement the turnMotoron method with the following:

ZeroMotor();
motorOn := TRUE;

8. After youhave set up the turnMotoron function, we will now implement the turnMotoroff

method with the following:

ZeroMotor();
motorOn := FALSE;

9. stopMotor will consist of only the following:

motorOn := FALSE;

10. The homeMotor method is also quite simple. This method will turn the motor on if it is off
and then call the zeroMotor method. Once these operations are complete, the motor will

be shut down. To do this, implement the following code:

IF motorON = FALSE THEN
motorON := TRUE;

END_IF

ZeroMotor();

motorON := FALSE;

11. Thenext method to tackleis the positionMotor method, which will take in an argument

and set the motorPosition function block variable to it, as in the following code:

METHOD PUBLIC positionMotor : BOOL
VAR_INPUT

motorPos : INT;
END_VAR

The logic for this method is as follows:

motorPosition := motorPos;

192 Libraries: Write Once, Use Anywhere

12. Now thatall the variables are set up, we will need to save the project as a compiled library.

EH SaveProject Ctrl+S

Save Project as...

| Save Project as Compiled Library...

E] Save Project and Install into Library Repository

Figure 7.16: Saving the library

13. When you save the library, you will be met with a Project Information screen, as in Figure

7.17. Input the following information from Figure 7.17 to save the library:

File Summary Properties Statistics Licensing

Company learning
Title motorContorl
Version 1.0.0 [] Released

Figure 7.17: Information fields for the library

This will create the Project Information file. This file will hold the metadata for the
library. You can change the version number, name, or anything else by double-clicking

the file once it is created.

14. Atthis point, your library is now saved and ready to be imported, similar to how we did in
the Third-party libraries section. Once you import the library, you can modify the PLC_PRG

file with the following to consume the code:

PROGRAM PLC_PRG
VAR

motor : MotorControl;
END_VAR

Chapter 7 193

At this point, we should be able to access all the methods in the function block. For ex-

ample, we now have access to the following:

]I'IIZIT.'.CI]‘.‘.I

homeMator
positionMaotor
stopMotor
turnMotorOff
Spy turnMotorOn

erobotor |

Figure 7.18: Library methods

To give our project a test drive, implement the following reference variable if you have not already

done so:

PROGRAM PLC_PRG
VAR

motor : MotorControl;
END_VAR

The motor variable is a simple object reference variable for the MotorControl function block in

the library. To test a few methods, we’re going to rig the PLC_PRG POU file with the following:

motor.turnMotoron();

motor.positionMotor(motorPos := 120);

When the code is run, you should get the following:

Device Application.PLC_PRG

Expressicn Type Value
= ¢ motor Motorc...
@ motorPosition INT 120

@ motordn BOOL

Figure 7.19: Outputs

In this example, we only called two of the library methods. We only called two to see it in action

and prove that it works.

194

Libraries: Write Once, Use Anywhere

Project improvements

The final project demonstrates that the code works; however, we did not document the library

members. Also, if a developer were to perform a task such as positioning the motor, they would

need to call multiple methods. For example, to position the motor correctly, they would likely

need to do the following:

Call stopMotor if the motor is running
Call homeMotor
Call positionMotor to reposition it

With the current setup, the library user would have to remember a bunch of steps each
time they need to position the motor. For this cleanup, do two things. First, document
what the methods do. Second, rework the library to use a Fagade method to carry out the
described positioning operation.

This exercise is meant to simulate real-world library development. To carry out this clean-
up, you need to assume that 1) you do not know who is going to use your library and 2)
you do not know how the library is going to be used. This means you must really gener-
alize your solution. When it comes to a task like this, there is no right or wrong solution.

Essentially, you can only do your best to make it as usable as you can for everyone.

Documentation hints

As part of your documentation challenge, ensure you're following Rule 4 and have the following

covered:

Ensure the purpose of your variables is clearly defined. For example, if they are inputs for
some numerical calculation, stipulate it.

Define any return types and argument types. CODESYS does this automatically, but you
need to ensure you get in the habit of notating it in case you ever find yourself working
with a system that doesn’t.

Describe your methods with a clear sentence and apply the one-sentence rule.

Clearly denote what the function block does and how it should operate. Though itis not

totally necessary, some developers will list out the methods as well.

Now that you've made and cleaned up your revolutionary library, it’s time to share it with the

world. In the next section, we’re going to explore some common considerations that need to be

addressed before you ship your code!

Chapter 7 195

Distribution

If you were to ship a library like the one we just built, you would need to determine how you’re
going to share it. Typically, many developers will opt to deploy their code to a platform such as
GitHub. This will allow others to pull the project down and use it. This route assumes you’re
making your project free to use. Depending on how you set the project up, this route will also

allow others to contribute and work on the project with you.

Sometimes you can even sell your project. You can do this by creating a website and charging
users to download it. In some PLC ecosystems, you can even opt to deploy your code via official
channels. In many cases, you can distribute your project for free or for a charge. However, one

important aspect to consider when deploying your code is licensing.

Licensing

Another consideration that you must consider is licensing, as it will dictate how users will be
allowed to utilize the library. Licensing is very important whether you’re using or creating a
library. There are many different licensing types to choose from. Common licenses are MIT, BSD,

and Apache licenses.

If you opt to use a third-party library, you need to pay attention to the licensing agreement. Many
libraries and plugins are free to use; however, this may not mean that you can freely distribute
them. In other words, just because you don’t have to pay for a library, it doesn’t mean you can
use it in a product that you're going to ship. This is an issue that is more related to traditional

programming languages, but can still bite you if you're not careful.

As with many traditional programming languages, you can download third-party libraries from
vendor websites, GitHub, or anywhere else. From many downloadable sources, the plugin is free;
however, it will come with a license agreement that will tell you how you can use the library
and distribute projects that utilize it. For some licenses, you can do whatever you want to with
the library; for others, there are restrictions on modifications, while others are much stricter on
whatyou can and cannot do. Itis wise to remember that there are many different interpretations
of free, and you would be well advised to understand the types of licenses the software you're

employing has.

196 Libraries: Write Once, Use Anywhere

Summary

In this chapter, we explored libraries. We learned what they are, how to use them, what third
parties are, basic development principles, and so on. You should now be able to use libraries
from external sources or create your own. What you will find is that by using libraries, you can
truly port code to different projects that use a compatible system and cut down on your overall

development time and effort.

There are a lot more to libraries, such as namespaces and so on, that were not explored in this
chapter. A whole book could be dedicated to this subject. It is recommended that you explore
libraries more on your own. This chapter was just a crash course to get you familiar with the

concept and consumption of libraries.

The key to maintaining your library is version control. Whether you’re deploying through GitHub
or selling your project, you will need to keep it organized and versioned. In the next section, we’re

going to explore how to do this with Git!

Questions
1. Whatis alibrary?
2. Whyis documentation important?
3. What are three common types of software licenses?
4

What are some good design patterns to use in a library?

Get This Book’s PDF Version and

Exclusive Extras
Ok= {0
=

Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

packtpub.com/unlock

Part 2

Software Engineering
for Automation

In this section, you’ll broaden your skills beyond programming and dive into the essential tools,
practices, and architectural techniques that support professional software development. You'll
learn how to manage code effectively with Git, navigate the software development lifecycle, and
use UML to design clear, scalable architectures. You’ll also explore methods for testing, debug-
ging, and leveraging Al to troubleshoot issues, along with applying SOLID principles to produce
high-quality, maintainable automation software. By the end of this part, you'll have the practical
knowledge needed to collaborate confidently, architect solutions, and ensure your code is robust

and resilient.
This part of the book includes the following chapters:

e Chapter 8, Getting Started with Git

e Chapter 9, SDLC: Navigating the SDLC to Create Great Code

e Chapter 10, Architecting Code with UML

e Chapter 11, Testing and Troubleshooting

e Chapter 12, Advanced Coding: Using SOLID to Make Solid Code

Getting Started with Git

Many small and mid-sized automation companies, for whatever reason, will not invest time or
money in version control. Unfortunately for them, this is a recipe for disaster. Source control is
as much a part of modern software as gasoline is to car racing. In short, an organization will not

be able to scale without adequate version control software.

There are many different types of version control platforms available. Many of these platforms
are geared toward traditional software development; however, most of these can still be used
to great success in the automation world. It is true that without proper plugins, some features
of the version control software may be unavailable; regardless, it can still be leveraged to great

success within an organization.

This chapter is going to be dedicated to understanding one of the most, if not the most, popular
version control platforms on the market: Git. To do this, we’re going to take a hands-on approach
to using the Git command-line interface (CLI) and learn to use the software via a terminal. If you
don’t have any experience working with a terminal, don’t fret; it may seem scary, but it is quite
simple to use. The key to working with any terminal program is simply learning how to talk to it.

To do this, we’re going to look at the following:

e Understanding what version control is

e Understanding what version control is not
e Understanding Git

e Understanding GitLab

e Using the Git CLI

e Understanding branches

e Exploring PLCopen XML

200 Getting Started with Git

Finally, to round out the chapter, we’re going to create a project for a simulated car wash to ex-

periment with creating branches and pushing changes.

Technical requirements

To follow along with this chapter, you will need a few things. First, you will need Gitinstalled on
your machine in some way, shape, or form. On the off chance you have access to a Linux computer,
you can install or use the prepackaged version of Git for Linux. However, in the more likely sce-
nario of you using Windows, you can use a program called Git Bash, which can be downloaded

at the following link: https://git-scm.com/downloads.

Git Bash is the CLI that will allow you to interface with a repository management system. With
that, you will also need a Git repository manager. For this project, you can set up a free account
with GitLab and use it for the following tutorials. However, you are not limited to GitLab; you
can use pretty much any system, such as GitHub, Bitbucket, or anything else that also supports
Git, so the only real consideration there is when picking a repository manager for this book is
to ensure that it is compatible with Git. You can sign up for a free account with GitLab at the

following URL: https://about.gitlab.com/pricing/.

What is version control?

When I first started out as an automation engineer, I would often be required to modify software,
install software, or do any number of things to a machine’s codebase. However, I came to realize
that this was often quite difficult as the correct codebase was usually stored on someone else’s
computer or lostin the vacuum of cyberspace. This meant that I would have to spend needlessly
long periods of time at a customer site doing tasks that were already done. In other words, I would
have to rework jobs, and assignments that would otherwise take a few minutes would turn into
weeklong affairs. As I grew and expanded my horizons as an automation engineer at various
companies, I found this behavior to be common. For anyone else who has ever experienced this,
all hope is not lost. In fact, there is a relatively simple solution to this problem. That solution is

called version control.

Version control is a way of storing software projects as well as other documentation in reposi-
tories that share a centralized URL and can keep track of all changes that have been made to the
files. What we’re going to consider to be version control or version control systems will consist
of a true version control software like Git and a repository manager like GitLab. In day-to-day

speech, when someone refers to version control, they are normally referring to a setup like this.

https://git-scm.com/downloads
https://about.gitlab.com/pricing/

Chapter 8 201

The terms source control and version control are often used interchangeably, but there is technically
a difference between the two. However, it can be argued that the differences are mostly splitting

hairs, so we’re going to stick with the normal vernacular and use the terms interchangeably.

Version control is especially useful when there is more than one person working on a project or
if someone other than the initial developer needs the source code. The key here is that version
control makes the code be in one centralized point, which means there is one source of truth for
the codebase. This means that if there is a permanent change to the codebase, it can easily be
made available to everyone working on it. In turn, this means that accidentally losing changes
to a codebase, confusing different codebase versions, and requiring extensive rework becomes

anon-issue.

The true power of source control stems from its versioning nature. As the name suggests, source
control software will version the files in a codebase. This means that if you or someone else
makes a modification to the source code and the changes are committed, the original code is not
lost. If needed, the code can be easily rolled back to its original state before the changes were
introduced. This feature is especially handy when it comes to automation. Often, a customer will
need to temporarily change out a machine component, which means the source code will have to
be altered to accommodate it. As every automation engineer knows, the customer will typically
want to roll the changes back and put the original part back in. For an organization that doesn’t
utilize source control, that could easily equate to an extensive rewrite to restore the code, in other
words, unnecessary work. However, for an organization that does use source control, rolling back

the changes can be as simple as pressing a few buttons or copying and pasting some changes.

Traditionally, PLC code is not supported well in standard repository management systems. This
means that certain features available for common languages, such as Java or C#, are not avail-
able for PLC projects. This is at least true for repository management systems such as GitLab or
GitHub. As the line between traditional computer programming and automation programming
blurs, newer automation focused version control systems are emerging, but haven’t made a huge
impact in the industry yet. Nonetheless, a version control program can greatly increase the col-

laboration and productivity of a development team.

Note

V4 Automation software is generally not supported in the same way that traditional
\G/‘ programming languages like C++ or Java are by systems like GitLab or GitHub. There
are some features such as viewing source code in the browser that are typically not

supported.

202 Getting Started with Git

Now that we’ve explored what source or version control is, we can move on and explore what it

is not.

What version control is not

There are a lot of myths and misunderstandings about what the role of source control is. A lot
of these misguided truths stem from older engineers, managers, and business owners who do
not have a solid background in the software development process. Regardless, many myths and
partial understandings have hamstrung a lot of small to mid-sized organizations. In this section,

we’re going to look at some of these to learn what source control is not.

Source control is only for large teams

This is arguably the most misguided myth of them all. Source control can and will increase pro-
ductivity regardless of whether the development team has 100 engineers on it or just one. The
primary purpose of source control is to version files and prevent them from being locked away
on an employee’s development computer. Regardless of the number of engineers on a team, ver-
sion control will allow an organization to have a single point of truth for the software, allow for
the housing of the software in a centralized location, and above all else, keep a record of all the

changes in the code since it was originally pushed.

Source control is a security risk

This is one of my favorite misconceptions about source control, mostly because of how silly it is.
Many older automation engineers and managers who have no experience with source control or
cloud storage often misunderstand what cloud storage is and how version control works. This
myth is multifaceted, with the first misconception stemming from what cloud storage security is.
Many older engineers believe that cloud storage is unsafe because the company using the service
has no control over security. This is a noble but very misguided assumption. First, itis important
to understand that though no organization can guarantee perfect security, the security that many
of these cloud storage solutions offer will be significantly better than anything a small to mid-
size automation company will realistically be able to pull off. It is important to remember that a
respected source control host houses many projects from many companies and individuals, and
though they can never guarantee foolproof security, itis realistically safer to store your code online

than on an in-house system that many small to mid-size automation companies have to offer.

Chapter 8 203

Another facet of this myth is that source control must be stored in the cloud. Again, this is unequiv-
ocally untrue. Most respected source control vendors will offer the ability to deploy an instance
of the software on a local server. Typically, a modern way that vendors will distribute the version
control software is with what’s known as a container or a standard download. Containers will
utilize a system such as Docker or Podman to run the application on a local server. The nature of
Docker and how to run a Docker instance go well beyond the scope of this book. Regardless, it is
possible to deploy and run your own version control instance on your server. Utilizing a container
or download deployment is not recommended for smaller companies, as containerization and
general management of a source control system will require in-depth IT experience and resourc-
es. Housing your own version control instance will require a hefty server computer to store the
code, an admin who can maintain the version control instances (especially if it is a container
deployment), and, ideally, a backup server somewhere that can act as a disaster recovery (DR)
system. Many larger companies that have more resources and budget often opt to run their own
deployments, but for mid-size and, especially, small companies, it’s usually cheaper and safer to

use a version control service in the cloud.

Finally, the last facet of this myth is that anybody can see and pull the code. Again, this is naively
untrue. All quality version control systems will allow users to cherry-pick who they want to view
and access their source code. This means that if person X is no longer employed by the company
or no longer needs access to the codebase, an admin on the system can simply revoke their per-

missions and prevent them from seeing or accessing the code.

Version control is the same thing as a shared file system

This is, unfortunately, the philosophy of many smaller organizations that do not have a solid
foundation in software development principles. A filesystem on a server is not, and cannot replace,
aversion control system. A shared filesystem can, at best, house different versions of a program in
different folders. This, unfortunately, is only as good as the least organized developer. If someone
uploads their code to the wrong directory, that is a directory that houses an older version of the

codebase; the old codebase is lost for good.

Overall, a traditional version control system is not going to give the same benefits for a PLC
project that it would for a general-purpose programming language, but it can greatly increase
productivity and promote collaboration across a development team. Version control will create
a much more consistent and cohesive environment to work in and prevent half-baked changes

from finding their way into the codebase. So, how can we start using a version control system?

204 Getting Started with Git

Understanding Git

There are many ways to interact with a source control system. Most systems will support some
type of UI or have a plugin for an IDE such as Visual Studio or CODESYS. These plugins can get
you through the day; for example, you will be able to easily upload and download changes as
well as create branches. However, to effectively use and understand a source control system, itis

important to understand how to use it via a CLI. With that, we’re going to look at installing Git.

Installing Git on Linux

Note

&

If you are using Windows, you can skip ahead to the Installing Git on Windows section.

Okay—very few people are going to develop PLC code on a Linux system; however, automation is
much more than PLC software engineering. There are niche systems, especially advanced robotics
systems, that often use or require a Linux distro. Regardless of why you’re using Linux, you are in
luck when it comes to Git. Git often comes packaged in most Linux distro repositories; therefore,

itis very easy to get Git up and running.

As any Linux user knows, each distro has its own package manager. The two most common Li-
nux distros are of the Debian variety, such as Ubuntu, and the Fedora variety, such as Rocky, Red
Hat Enterprise Linux (RHEL), or CentOS. For the most part, the following commands can be
used for these distros. Keep in mind that each Linux distro is different and could use a different
package manager, so if these commands don’t work for you, a simple internet search will reveal

the correct command.

Fedora installation

To install Git on a Fedora-based system, you will usually need sudo privileges. Once you secure

those privileges, you can use either of the following commands:

sudo yum install git

You can also opt to use the dnf package manager if it is available on your system, with the following:

sudo dnf install git

Chapter 8 205

Debian installation

If you are using a Debian distro such as Ubuntu, you can use the following command:

sudo apt install git

Now, if you're using Windows, you will want to use Git Bash. For this book, I'm going to use a

Linux machine; however, the commands will be exactly the same for Windows.

Installing Git on Windows

More likely than not, you're going to be developing on a Windows machine. This is especially

true if you are using a development system such as CODESYS or TwinCAT.

Git Bash installation

Regardless of what development system you are using, you will need to download a program
called Git Bash. The link to download this program is in the Technical requirements section of this
chapter; to follow along, please follow the link and download the latest available version. If you
follow the instructions properly, you should get a program called Git Bash that will be a simple

terminal program.

The terminal program is an interface for interacting with repositories. After installing Git Bash, you
should be able to use git commands either via a PowerShell terminal or the terminal program that
was installed. If you opt to use the Git Bash terminal, it’s important to note that it will use Linux
commands. If you’re more comfortable with PowerShell, you can apply the same git commands

that we’re going to explore, but you will have to use PowerShell commands to navigate around.

WSL installation

Another way you can install Git on your machine is to use a WSL instance. A WSL instance is a
way to run a Linux instance, such as Ubuntu, on your Windows PC. Essentially, with WSL, you
get a full version of a Linux distribution such as Ubuntu on your computer. WSL is becoming a

very popular choice with all types of developers because you can get the best of both worlds!

Regardless of which option you use to set up your Git instance, the commands will be the same.
You can pick a method to practice with now and easily transfer those skills to any of the other
media we explored here. With that, once you’ve set up your CLI, we can move on to setting up a

remote repository.

206 Getting Started with Git

Understanding GitLab

You may be somewhat confused as to what the role of Git is compared to that of a repository.
Many inexperienced engineers confuse the Git system with actual repositories; however, they

are different. The differences between the two are summarized next:

e Repository: A repository is like a house where the files that make up the codebase live.
For a system such as CODESYS, the program will be contained in a singular unit. In other
words, unlike with a traditional programming language, you will not be able to see the
individual files by default. A repository is also version-controlled when used with a system
like Git. This means that there is a clear record of the changes that were made. In other
words, if you need to revert to an older version of the codebase, you can.

e Git: Gitis a program that allows you to interface with the repository. Git allows you to
push files to the repository, pull changes, merge, and more. There are other alternatives
to Git, such as SVN, but Git is the most popular, and most repository systems support it

by default.

As stated before, when someone refers to version control in the wild, they are usually referring
to the repository and Git/SVN. This book will use GitLab as a repository manager; however, the
concepts explored here can be used across any Git-based system, such as GitHub, Bitbucket, or
the like. The procedure for setting up the repository will assume that you’re using GitLab, but

setting up a repository in any system is easy.

To begin with, use the link in the Technical requirements section to navigate to GitLab and setup a
free account. Free accounts are more restrictive with things such as the number of users, project

sizes, and so on; however, for practice, a free account should suffice.

Once you create an account, you can create a new project by selecting Create Blank Project. This
will take you to a form that will prompt you to enter information such as the project name. As
with many things in the IT space, this form has a good chance of changing, so it is best not to

memorize the form but rather understand what the required fields are!

e First, the project name is the name of the project. This field should mirror the name of
the software project. For example, if you’re working on a welder project for Company X,
you could use a name such as Welder_companyx. A name such as this reflects what the
software is for.

e Onceyouinputaname, the system will automatically generate a project URL. The project
URL will be used later to access the code. You will have some freedom when it comes to

this URL, but it is recommended to use the generated link.

Chapter 8 207

You can leave all the other fields blank and click the Create Project button, and your repo should
be set up. Most version control systems will mirror this setup. Setting up arepo is straightforward

and follows the same basic pattern.

Once you have the repo set, you need to choose one of the Git interface methods and install Git.
Again, it is highly recommended that you install Git Bash via the link provided in the Technical
requirements section if you're using Windows. Installing Git Bash is very straightforward and is
just like installing a typical Windows program. Once you have Git Bash installed, you can opt
to use either the PowerShell CLI or the terminal Git Bash comes with. Either will work for the

remainder of this tutorial.

If you opt to use PowerShell, run the following command:

This command should provide the version info, as in Figure 8.1.

git version 2.44.0.windows.1

Figure 8.1: Git version info

Once you see version info, as in Figure 8.1, you should be good to use Git. Now, it is important to

know that the version you see may differ; that is normal.

Once you have the repo and Git Bash set up, you can start exploring version control!

Using the Git CLI

Before we get started, it is important to note that systems such as CODESYS do have tools that
can integrate with GitLab and other systems. These tools are GUI-based, integrate directly with
the platform, and are easy to use. However, they are often specific to a singular system and vary
in their functionality and operations. Some of these plugins are also proprietary, which can fur-
ther hamper their adaptation. So, if you’re using one of these plugins, especially in a production

environment, be careful you are not violating any terms of usage.

For this chapter, we’re going to stick with the classic Git command line because it’s vendor-neutral
as far as programming languages go and can be used with pretty much any file type. Git has a
lot of functionality to offer, and learning the CLI can give us great control over what we’re doing.
This section is going to cover the basic operations that Git offers. To begin getting our feet wet,

we’re going to explore cloning a repo.

208 Getting Started with Git

Cloning a repo

Arguably, the most common Git operation is cloning a repo. Cloning arepo is a fancy way of saying
that we’re going to pull the project from our remote or online repository. The core of cloning the
project is the project’s URL that was created when you set up the repo. To view this URL, navi-

gate to your project and click the Code button. This button is typically to the right of the screen.

Clone with SSH
STy [
Clone with HTTPS

1)

Open in your IDE

Visual Studio Code (SSH)
Visual Studio Code (HTTPS)
IntelliJ IDEA (SSH)

IntelliJ IDEA (HTTPS)
Download source code

zip

tar.gz

tar.bz2

-

History Find file Edit v

Figure 8.2: Clone menu

From here, you will have two options. You can clone the project with SSH or HTTPS. SSH typically
requires a little extra configuration, but once configured, it will not prompt you for login cre-
dentials. On the other hand, HTTPS will require login credentials but requires no further setup;

therefore, in this chapter, we will use HTTPS.

To clone the project, copy the HTTPS URL by clicking the button with the clipboard. Then, run

the following command:

git clone <url>

Add the URL you copied in <url>.

Chapter 8 209

If you type in pwd, you should see the file path where your project was copied to. To open the
project, navigate to that directory. Depending on the system you’re using, you may get a message
saying that you have cloned an empty repo. This is fine because this is a fresh repo with nothing
in it. GitLab typically preloads a README .md file into the repo, so if you're using GitLab, you may

not get this particular warning.

Once you have the repo cloned, create a new PLC project on your system of choice and add the

following code:

PROGRAM PLC_PRG

VAR
X : INT;
y : INT;
sum : INT;
END_VAR

The main logic

X := 3;
y i=2;
sum = X + Yy;

The code for this particular tutorial doesn’t matter much, so don’t worry if it isn’t perfect.

Once you have the code in place, save the project and copy it to the directory that was cloned

down. Essentially, you should have something akin to Figure 8.3.

PROJECT File 220 KB

u README 24 9:19 PM Markdown Source ...

Figure 8.3: Git project structure
When the project is uploaded, run the following commands in your terminal one by one.
This command will add all new files and projects to Git:

The following command will commit the project to Git’s history:

git commit -m "Initial Commit"

210 Getting Started with Git

This command will take a message. When you commit, you want to have a descriptive message
about whatyou’re committing. For example, if you added the logic for a motor drive to the project,
you could have a message such as Motor drive code added for welder. In this case, we're working

with an initial commit, so just using that phrase as a commit message is fine for our purposes.

Finally, run the following command:

git push origin main

This command will push the code to the remote repository; that is, it will push it to GitLab. More
specifically, the code will be pushed to what is called the main branch. We’re going to cover this

more when we explore branches later in this chapter.

Once you run the final command, navigate to your project in GitLab. You should be met with

something like the following:

W Welder_companyx & c
¥ main v | welder_compnayx + v Find file H
'y Iniual Commit 1150900 | B || History
w37 MTWhitel125 hored 24 seconds ago
Name Last commit Last update
1+ README.md Initial commit 1 year ago
git Project.project Initial Commit 25 seconds ago

Figure 8.4: Project repo

The project can now be cloned by anyone who has access to the repository. The ability for any-
one to access the project is both a pro and a con. On the one hand, anyone who needs access to
the project has it, but on the other hand, anyone can modify the project. So, what can you do to

ensure that your stable project hasn’t changed? You can use branches!

Implementing branches

When done right, a project in a source control system should conceptually look like a tree. That
is, you’ll have the main trunk of the tree — in this case, the main branch that we just pushed to —
and you’ll have other branches. These other branches are logically isolated subprojects. That is,
a branch is the same source code that lives in the main branch, but it is meant to be altered in
some way. Typically, any time you need to address a bug or add a new feature to your codebase,

you’ll first create a branch in your repo.

Chapter 8 211

To create a branch, all you need to do is clone your project and run one of the following commands:

git checkout -b "<name of branch>"

git switch -c "<name of branch>"

The lateral command is newer but serves the same purpose, so you can use either. For this book,

to keep things consistent, we’re going to use the checkout version.

To test this out, we’re going to create a new branch for our welding project called function_block.

We can accomplish this with the following command:

git checkout -b "function_block"

To test whether our branch was created successfully, you can run the following command:

git branch

This command will show all our local branches, that is, branches that exist on our computer. If

the branch was successfully created, you should see something like Figure 8.5:

*
main

Figure 8.5: Branch

Now that we have a branch created, we’re going to open our project and add a function block

named mulFB with the following variables in it:

FUNCTION_BLOCK mulFB
VAR_INPUT

a : INT;

b : INT;
END_VAR

VAR_OUTPUT
product : INT;
END_VAR

VAR
END_VAR

212 Getting Started with Git

Once the variables are in place, be sure to add the following logic:

product := a * b;

Modify the PLC_PRG file to include the following variables:
multiply : mulFB;
prod : INT;

Also, add the following logic:
multiply(a:=3, b:=3);

prod := multiply.product;

Save the file and run the following Git commands in the terminal of your choice:

git add .
git commit -am "Added mulFB"

git push origin function_block

Once you run those commands, you can navigate over to GitLab or whichever system you opted
to use and look for your new branch. In GitLab, you will want to navigate to your project and
click the drop-down menu that says main. When you click the drop-down menu, you will see the

branch you created, as in Figure 8.6:

& You pushed to function_bloc

Create merge request

¥ main v | welder_companyx

Select Git revision

Q [Search by Git revision

()

Selected

v main default protected

Branches 1

function_block

Figure 8.6: Branch drop-down menu

Chapter 8 213

Once you click the branch name, you should see files similar to the ones shown in Figure 8.7:

Name Last commit Last update
r: README.md nitial commit 5 days ago
[git Project.Device Sim.Device Application... Added mulFB 5 minutes ago
[git Project Device. Sim. Device. Applicaticn., Added mulFD 5 minutes ago
i git Project. Device. Sim. Device. Application. .. Added mulFB 5 minutes ago

gt Project project Inltial commit 4 days ago

" git Project.-u Added mulFB 5 minutes ago
Figure 8.7: Project files in Git

Note

\E/ Notice that a lot of files were committed. These are cache files that are generated by
CODESYS. You can exclude these files by creating a . gitignore file and listing them.

When you perform a Git clone, you will, by default, pull the main branch. If you’re working on a

specific branch, you will need to check out that branch.

Checking out a branch

To access code in a branch, you need to check out or switch to that branch. This is a simple opera-
tion, and to do this, the first thing we’re going to do is delete the project from our directory. After

you delete the project, run the following commands in your terminal sequentially:

git clone <url>

cd welder_companyx

git checkout function_block

The cd command will simply change the directory to the repo you just cloned. If you changed to
a different directory before you ran the second command, you will need to navigate back to the
directory you cloned the repo in. Once you complete these operations, open the project, and you

should see all the code we just added. In other words, you pulled down your branch!

Once you complete your code changes, the branch needs to be merged into the main branch. Typ-
ically, this is done after a code review. The main drawback to using a raw system such as GitLab
with a PLC programming system is that you can’t view file changes natively like you can with
most traditional programming languages, such as C++ or C#. PLC projects that use a raw system

such as GitLab without additional Git plugins will require your peer reviewers to pull your branch

214 Getting Started with Git

for inspection. Some repository plugins will allow users to view code in remote repos; however,
as was stated before, support and functionality for these tools will vary. This technique can be
thought of as a quick and cheap methodology when plugins aren’t available. Regardless, to sig-

nal your code is ready to be merged into the main branch, create what’s called a merge request.

Merging code changes

A merge request is a request to consolidate code changes in your branch with the main branch.
To do this in GitLab, navigate to your branch and click the Create merge request button. This
button is usually located at the top of the branch page but could be subject to change. At the time
of writing this book, the button looks like the one shown in Figure 8.8.

(& You pushed to function_block 28 minutes aga o

Create merge request

¥ function_block ~ welder_comphayx [& Compare Flnd file Edit ~ Code ~

Figure 8.8: Create merge request button

This will navigate you to a form-like page. Typically, you will assign your reviewers here and add
information in the description box, such as what the changes were for. For now, just click the

Assign to me link, scroll toward the bottom, and click the Create merge request button.

Next, click the Merge button shown in Figure 8.9.

8 | Approve ‘ Approval is optional @ v
© Ready to merge! ~
Delete source branch (] Squash commits 3) [| Edit commit message
2 commits and 1 merge commit will be added to main.

Figure 8.9: Merge button

Once you complete these steps, you can test your merge by deleting your project again and cloning
down your code. Once you have cloned your code, open your project and you should see all the

new code you created!

This was just a quick crash course on how to use the basics of Git. When it comes to a production
environment, you need to consider how your group implements branches and reviews, so we’ll

look at this next.

Chapter 8 215

Understanding branches

Branches are very important when it comes to source control. A poorly implemented branch

strategy can lead to a corrupted main branch. Therefore, here are some basic tips to help you

create great branches and keep your repo nice and clean:

Naming: A branch’s name should be reflective of what it’s meant to do. For example, if
the goal of your branch is to fix a specific bug, name your branch something along the
lines of motor_bug_fix. If your branch is supposed to integrate a new feature, name it
something such as UDP_Support. If your group uses a ticketing system such as Jira, it is
usually a good idea to put the ticket number on the branch as well. It’s an even better idea
to link the branch to the ticket if possible. It is also important to ensure that your branch
name does not contain any spaces. For example, function blockisnotagood name and
could cause issues with the version control system you’re working with. It’s a good idea
to ensure that words in a branch name are separated by either a dash or an underscore,

such as feature-branch or feature_branch.

Check your branch: It is important to know which branch you’re currently on. Working
with different branches can get confusing quickly, and it can be easy to make mistakes.
Typically, your terminal program will put * by the branch you’re on and change its color.
Itisimportant to understand that when you first create a branch, itis what’s called a local
branch which means it lives on your computer. When you push the branch, it becomes a
remote branch which means it lives on whatever server your source control instance is on.
To see all your local branches, you can use git branch;to see all the remote branches you
have access to, you can use git branch -r;and finally, to see all the branches you have

access to, whether they be remote or local, you can simply use git branch -a.

Reviewers: It is usually a standard practice to have at least one other person review your
code before it is merged. Systems such as GitLab allow you to set a minimum number of
reviewers. Essentially, this feature will block any merger attempts made until the mini-

mum number of approvals is met.

Intermediate branches: Another good strategy is to have an intermediate branch to merge
with. This methodology is commonly called release branching or staging branching. Many
organizations, especially Agile ones, like to have releases on a specific schedule. So, it
is not uncommon for them to have a branch that everyone merges their code into for a
sprint or a given interval of time. Typically, engineers will merge into this branch, then
thatintermediary branch will be merged into main. This strategy is more for projects that
are on a timed schedule and have a lot of people working on them. For a small, one-off

project, this may be more trouble than it’s worth.

216

Getting Started with Git

Clean up after yourself: Not every branch will get merged. Sometimes a new feature will
be forsaken after the branch has been made; other times a branch may have been created
to test a concept that was never meant to be a part of the project. Branches will also quite
often need to be deleted after they have been merged. In any case, these branches need to

be removed. A simple way to manually delete a branch is with the following command:

git push origin --delete <branch_name>

Oftentimes, you will either be prompted to delete a branch when it’s merged or the branch
will automatically be deleted. In either of these cases, you will not need to manually delete
it with the preceding command. If, for any reason, the branch is still lingering after you

merge your it, you can still resort to using the command just shown.

Note

\E/‘ It is very important to remember that once a branch has been deleted, it and any

code/data that lived in the branch will also be permanently removed.

Pull often: Sometimes, you may find yourself working with other engineers in the same
branch. Though it can be argued that this isn’t the greatest practice in the world, it does
happen. If they make a change, you need to ensure your codebase reflects it. To do this,
you can use git pull. This command will fetch all the content from the remote branch
(branch in GitLab or whichever system you’re using) and putitin your project. Now, this
can be easier said than done. If that person has made changes to their code, such as re-
moving something, it could cause a conflict. There are ways to get around this; however,
when it comes to PLC code, it is usually easier to simply delete your project, re-clone the

code, and check out the branch again.

Recently, a new technology has been introduced to help provide some cross-compatibility to

PLC projects. Essentially, for compatible systems, this technology generates a lightweight file to

store in a system such as Git.

Chapter 8 217

Exploring PLCopen XML

Most PLC systems are not compatible, meaning you typically can’t port a project from one PLC
system to another; however, a standard exists that allows developers to export their projectin a
specialized eXtensible Markup Language (XML) format. XML is a data exchange language that
used to be popular in the early days of the internet. Though it lostits popularity to more modern
data exchange languages such as JSON, itis still used quite a bit as a generic means of formatting
data that can be used for parsing at another time or by another system. Some of the more advanced
PLC systems are now offering a feature that allows you to export your program and certain other
metadata in an XML format. This means if your programming system is compatible with what’s

called PLCopen XML, you can, in theory, port your project from one system to another.

Note

V4 This is a fairly new technology in terms of practical application, and you could en-
\E/ counter bugs that stem from XML files generated in different systems. For example,
a program could use a function block or syntax that is not universal or supported

by the standard.

When it comes to source control, you can store your whole project as we just did; however, it
would be better to export your project when necessary and upload the PLCopen XML file. This
will keep your repos lighter, and if your group is familiar with DevOps tools such as Coverity,
SonarQube, or the like, you can create whole CI/CD pipelines to scan your PLC code, albeit you
will most likely need to create your own custom plugins. New research is currently underway on
how to leverage PLCopen XML and CI/CD pipelines, but at the very least, itis a reliable means of
storing your PLC project in Git and possibly creating CI/CD pipelines around it.

218 Getting Started with Git

To export a program in CODESYS, you can navigate to the option highlighted in Figure 8.10:

Project | Libraries Build Online Debug T
| Add Object

Add Folder...
Scan for Devices..
Update Device...
[] Edit Object
Edit Object With...
9 Online Config Mode...

Set Active Application

Project Information...

om

Project Settings...
Project Environment...

Project Localization »

Document...

2 M

Compare...

Commit Accepted Changes
Export...

Import...

| Export PLCopenXML..,
Import PLCopenXML...

User Management »

Automation Server >
Enable SoftMation

Figure 8.10: PLCopen XML export

This will export the program in XML. You will have the option to customize your export; however,

you can export everything on the device by selecting Device, shown in Figure 8.11:

Export PLCapenXML X

Please select which object(s) should be exported
= I_:ﬂ Device
= o Application

m Library Manager

& MainTask
[E] pLc_Pra

& visu_Task

D m Library Manager

Select > Deselect > 0K Cancel

Figure 8.11 -Export selection

Chapter 8 219

Importing one of these files is as simple as selecting Import... from the menu and selecting the file.
Now that we’ve explored the basics of Git and PLCopen XML, we can move on to our final project!
Final project: Modifying a project

For our final project, we’re going to modify a project. We’re going to make a branch and push a

small modification to the branch and finally merge the change. To begin, let’s create a new project
called CarwWash in GitLab:

1. Navigate to the root page and click the + button in Figure 8.12:

—
N

b2 D (+)
o i [
Q, Search or go to...
Figure 8.12: Creating a new project
2. Now), create a blank project, fill out the project name, and click Create.
3. Next, add the following PLC code to a new project:

PROGRAM PLC_PRG
VAR

msg : WSTRING;
END_VAR

4. For the main logic, add the following:

msg := "at the car wash yeah!";
5. Clone the project down, add the PLC program we just created to it, and push the project.
With that, the project is now set up to begin the final simulation.
In this simulation, we will add another message to the code that says, "oh boy". Follow these steps:

1. Pull down the code.

2. Create a branch. In this case, name it new-message.
3. Make your code change.

4. Push the code into your branch.

5.

Merge it.

Before you read on, try to do this on your own!

220 Getting Started with Git

Final project: Solution

Were you able to get it right? If not, here’s the solution:

1. To pull down the code, you should have utilized the following command:

git clone <url>

2. The following command should create a new branch named new-message:

git checkout -b new-message

3. Next, you should have modified your PLC program by adding the following:

PROGRAM PLC_PRG
VAR
msg : WSTRING;
msg2 : WSTRING;
END_VAR

Of course, you should have also added the following logic:

msg2 := "oh boy";

4. You should have then saved the project and executed the following commands:

git commit -am "oh boy code added"

git push origin new-message

5. From here, you should have created a merge request. At this point, the code should be in

the main branch!

Summary

This chapter was a short tutorial on how to carry out basic operations in Git. Gitis a very powerful
source control tool, and it can mean the difference between haphazard projects strewn across peo-
ple’s computers or everything in one central location. Though many GUIs can be used to perform
Git operations, any engineer worth their salt should have a basic understanding of how to use the
Git CLI In all honesty, though some people will use a Git plugin to perform these operations, itis

often seen as a crutch. Therefore, you should become very familiar with atleast the basics of Git.

Source control, and, by extension, Git, play a pivotal role in the life cycle of software. Software,
as you have probably deduced at this point, is way more than just writing awesome code. In the
next chapter, we’re going to explore key concepts to ensure that your code is designed well as we

explore the software development life cycle!

Chapter 8 221

Questions

What is a branch?

—_

What s Git?

What is the difference between Git and a system such as GitLab?
How do you clone a project using Git?

What is the difference between a local and remote repository?

What does git pull do?

What is the difference between git branch -aandgit branch -r?

How do you create a branch with the Git CLI?

© ® N e A W

What does git add . do?

Further reading

e XML Exchange: https://www.plcopen.org/standards/xml-echange/

e Git cheat sheet: https://git-scm.com/cheat-sheet

Join our community on Discord

Join our community’s Discord space for discussions with the authors and other readers: https://

packt.link/embeddedsystems

https://www.plcopen.org/standards/xml-echange/
https://git-scm.com/cheat-sheet
https://packt.link/embeddedsystems
https://packt.link/embeddedsystems

SDLC: Navigating the SDLC to
Create Great Code

The greatest challenge that any inexperienced programmer will have to overcome is the urge to
create. This may sound oxymoronic because that’s the purpose of engineering: to create some-
thing new. Couple that mentality with a hardware-first attitude, and it’s not hard to see why so
many entry-level programmers muck up projects. Software development is much, much more
than writing code. Whether you're a traditional programmer working on a social media app or

a PLC programmer programming a smart factory, coding is arguably of medium importance.

Saying that coding isn’t the most important part of software development may sound like utter
blasphemy or ignorance to those looking to create. However, software development is actually a
series of steps, and coding is towards the middle. This process is called the Software Development
Lifecycle (SDLC). The SDLC is the flow that needs to be followed to ensure that your project will

not only work but survive the test of time.

If your goal is to grow as a programmer of any kind, you must understand the SDLC and how
it works. Many developers fall into the trap of thinking that if they know all the latest PLC and
automation technologies that are on the market, they are “good.” However, knowing how to use
those technologies versus when to use those technologies is two radically different things. Being
able to understand and implement this concept is what separates an engineer from a coder, and
it all starts with the SDLC.

224 SDLC: Navigating the SDLC to Create Great Code

This chapter is going to be dedicated to understanding the SDLC and how to leverage it to produce

quality code. To do this, we’re going to explore the following concepts:
e Understanding the concept of the SDLC

e The general steps of the SDLC

e Understanding how to implement the SDLC

We will end the chapter with the deployment of a working temperature conversion program
similar to the ones we have developed in the past. However, this time, we will build one properly
using the steps of the SDLC.

Technical requirements

The source code for this chapter can be found in the GitHub repo for this book. You can use the
following URL: https://github.com/PacktPublishing/Mastering-PLC-Programming-Second-
Edition/tree/main/Chapter%209.

Understanding the SDLC

The SDLC comprises steps in the software development process. Much like any other engineering
process, the SDLC is the process that should be followed in some way to ensure you are correctly
building the correct program. Depending on who you ask or what you read, the number of steps

in the SDLC can vary; however, the SDLC is usually broken down into the following:

—_

Gathering requirements
Designing the software
Building the software

2

3

4. Testing the software

5. Deploying the software
6

Maintaining the software

Some models will only use five steps, and some will use more; however, no matter the model, the
steps are the same, just broken down differently. For this book, we will stick with the six steps

outlined. Graphically, the SDLC can be pictured as in Figure 9.1:

https://github.com/PacktPublishing/Mastering-PLC-Programming-Second-Edition/tree/main/Chapter%209
https://github.com/PacktPublishing/Mastering-PLC-Programming-Second-Edition/tree/main/Chapter%209

Chapter 9 225

o

Deploy X

Maintenance

Figure 9.1: SDLC

To many PLC programmers, the SDLC s as exotic a concept as alien life is to zoologists. Sadly, this
comes from the mentality that software is an unimportant component of automation. However,
to properly implement the concepts that we have covered thus far and to take our PLC software

to the next level, we need a clear understanding of the SDLC.

In the introduction, we kind of touched on why the SDLC is important. In this section, we’re going
to go alittle further. Many PLC programmers are usually non-software engineers. Chances are, if
you’re reading this book and are not a student, you’re probably something akin to a mechanical
engineer, electrical engineer, electrician, technician, or so on. Chances are also in favor of you
having written PLC code in the past. If you are not an experienced software engineer, chances
are that code is just a complement to your hardware. As we have touched on in this book, this is

a very poor ideology to have. Software must be treated like any other engineering project.

As with any other well-engineered project, you will need to know what the product is meant to
do and whether it has a competent design, construction, and test routine before it is deployed.
After all that is done, you will need to make modifications and repairs to the product according
to the customer’s wishes. In traditional software development, it is common for developers to
try to shape a problem to fit a solution or produce a solution that is so poorly designed that it
cannot be adapted to meet new challenges that the end users will encounter. As with any other

process, there are proper ways to implement the SDLC.

226 SDLC: Navigating the SDLC to Create Great Code

The general steps of the SDLC

There are many frameworks to implement the SDLC, such as Agile, Waterfall, and so on, that are
very important to understand. Before we can dive into those concepts, we first need to understand
what each step of the SDLC is responsible for. Though we touched on this a bit, this section will

be dedicated to exploring the steps in the SDLC so we can implement them.

Gathering the requirements

If you ask a person off the street or an inexperienced software developer what the most import-
ant aspect of developing software is, chances are, they will answer coding. It makes sense since
software development is about developing software. However, the following two steps must be
completed before you or another developer even thinks about touching a keyboard: requirements
and planning. Some break this phase into two distinct phases, while others simply call this an
analysis phase. Regardless of whether you consider this a phase or phases, it is the backbone of
the project. In short, without this step, you simply do not have a project. If the SDLC is a build-
ing, the requirements/planning phase is the very foundation, and like any other building, if your

foundation is poorly planned and implemented, your building will eventually crumble.

Requirements can be thought of as a punch list of functionalities that are required by the program.
In other words, the requirements are the functionalities that are necessary for the program to
solve the problem. Without properly gathering the correct requirements, there is little chance
that the program will solve the problem at hand, and you’ll end up having to fit the problem into

the solution, which is quite literally the worst thing you can do.

During this phase, you will plan out the rest of the SDLC, choose the technologies you are going
to use, and so on. This phase is the most pivotal step in the development of your software. If this
phase is not completed properly, regardless of what methodology you’re using, your project is

as good as sunk.
During this phase, you will want to think about the following deliverables:

e Technology stack

e Aplan of how the SDLC will be executed
e Who will work on what components

e Therequirements of the project

e User acceptance criteria

Chapter 9 227

In traditional software engineering, some groups will pick the technology stack during the design
phase. In automation, customers and projects can be pickier about the tech stack. For example,
they may only use Allen-Bradley or Beckhoff PLCs and may only want specific software packages
for HMI or SCADA systems. These requirements need to be established at the beginning of the
project, which is why the technology stack needs to be identified as soon as possible. Waiting
until alater stage of the SDLC can run the risk of losing thousands of dollars, if not more, in com-

ponents and software, as well as running the risk of significant redesign.

As we established, software development is so much more than coding. Fast, efficient code is not
the key to a quality project; having the code meet the customer’s needs is. It is all too common
for developers to try to fit a problem to a solution. Young, edgy programmers are usually more
concerned with showing off their chops than getting the job done. A good manager and pro-

grammer can put that aside and develop a strict set of requirements to meet the customer’s goal.
The following are some tips for collecting requirements:

e Know your end users: During the requirements/planning phase of the development life
cycle, it is important to develop a good picture of what you’re trying to accomplish and
who your end user or users will be. If you can, it is a good idea to try to communicate with
your end users during this stage. For example, I would generally like to speak with the
operators in a one-on-one setting just to get a feel for who they are and what they know.
Writing a program is a lot like writing a paper — you want to gear the program toward
your audience. Some developers like to target leadership for this conversation. Though it
is important to have their input, I found it much more productive to interview the people

who actually work the machine.

e Create user stories: In the Agile methodology, there is a concept that is known as the user
story. Essentially, the user story is a single sentence that describes the role of the user, the

action, and the added value of the action. A general user story is as follows:

As a <role> I want to perform <action> to get <value>.

For example, we can write a user story such as the following:

As a technician, I want to reset the sensitivity of the sensor to
get better readings.

228 SDLC: Navigating the SDLC to Create Great Code

e Write down your user stories: Writing user stories is an Agile technique thatis often not
used in a PLC programming environment; however, in my opinion, this is one of the most
powerful requirement-gathering techniques, regardless of which methodology you choose
to develop your software with. Writing down user stories is an excellent way of concep-
tualizing functionality, especially in an environment that may consist of user-restricted
operations. They also help prioritize functionality while allowing progress metrics to be
used with proper Agile practices. Just from a pure organizational point of view, I would

strongly recommend trying user stories in at least one project.

Thereis alot to the art of gathering requirements. Learning how to gather requirements is a skill
that takes practice. Put simply, to gather requirements, you have to learn what questions to ask,
how to make customers feel comfortable, and understand your end user. There is a lot to the
art—so much so that whole books have been written about this. Now that we have a general idea
about the requirements, it is time to look at turning these requirements into a coherent design

that will allow for expandability.

Designing the software

It is not uncommon for hiring managers to ask junior-level engineers in interviews how many
phases of the SDLC they’ve worked across. Most junior engineers will typically spout off how
much they code and love coding, but very few will dip into their design experience. This is mostly
because, to many junior developers, coding is designing. Unfortunately, this is another attitude
that can sink a project. Put simply, without a quality software design in place, you can utilize the

best hardware and write the fastest code, but in the end, your project is doomed.
Outside of collecting requirements, the design phase is by far the most important.
I generally like to think of a program design as three parts:

1. Overall architecture: This is a high-level design of how the system will behave as a whole.
This level will determine the necessary subsystems and their responsibilities, how data
will flow between the subsystems, and the more granular technologies that will be used
at both the hardware and software levels.

2. Component architecture: This level is concerned with how a subsystem will look and
operate. This could be fleshing out how an HMI should work for a subsystem, getting
database schemas together, implementing high-level software and hardware designs for
the subsystem, choosing third-party libraries, and coming up with a general action plan

to implement the system.

Chapter 9 229

3. Implementation of components: This level is dedicated to designing the guts of a sub-
system. In contrast to the component architecture phase, this phase is concerned with
the details, such as producing pseudocode for a program, fleshing out an HMI wireframe,

producing basic proof of concepts for how parts should work, and so on.
There are many ways to set up designs for a system. Common design techniques are as follows:

¢ Flowchart designs: A graphical representation that shows the flow of the program

e Pseudocode designs: A word-based representation of code that is used for drafting out
a program without needing to worry about syntax

e Wire frames: A rendering of how the UI/HMI should look

e Block diagrams: How components interact with each other in a system

e Electrical and wiring diagrams: Electrical schematics

e Mechanical diagrams: Mechanical schematics

OOP design

\p// When it comes to object-oriented programming, there is another design tool that can
be used to flesh out a program’s overall object-oriented design. This design method

is called Unified Modeling Language (UML), and it will be explored in Chapter 10.

This phase is very document-driven. Though it is not uncommon to produce some working proof

of concept products, this phase will be primarily organizing thoughts and designs.

For now, it’s important to understand that there is a major difference between the building phase
(coding phase) and the designing phase. Your design is the foundation for both the hardware and
the software of your project. If this phase is not fleshed out well, the rest of your project will have
a very shaky foundation. However, when you do flesh out your design, you will be able to move

on to every developer’s favorite phase, the building/coding phase!

Building the software

After a quality design is produced, you can move on to what most developers live for: coding. Since
everyone knows what programming is, and due to the amount of time we’ve already spent on
programming in this book, this section will be relatively short. Coding is not the mostimportant
aspect of developing an excellent program. The heart of a program resides in the requirements
and design. When those two steps are done correctly, the code should, for the most part, write

itself. Now, this does not mean that writing code should be considered unimportant because,

230 SDLC: Navigating the SDLC to Create Great Code

obviously, it is. No code ultimately means no product. The point of this section and chapter,
in general, is to merely hammer home the point that code is not everything when it comes to
software development. Coding is very important, but it is not the most important aspect of the

development process.

With thatin mind, how do we know whether our well-designed, well-crafted program meets the
requirements and is working the way it should? The answer to thatis testing. In the next section,

we are going to cover what testing is and some types of testing.

Testing the software

Testing is never at the top of a developer’s wish-to-do list; however, it is one of the mostimportant
steps in the SDLC. You may have just written the most sophisticated and fastest code ever, but
unless you test it, it’s trash. For many, testing is often confused with debugging, and many new
programmers will often assume that if they debug the code enough to make it run, it’s been tested
thoroughly. T have personally seen seasoned PLC programmers with the same attitude. Regardless,

this is a major fallacy that has killed many great projects before their time.

Software testing is not debugging. As we will explore in Chapter 11, debugging is the act of finding
bugs, whereas testing is the act of ensuring the quality, reliability, and functionality of a program.
As we will explore in Chapter 11, there are many ways to test a program, with some common,

high-level test types being the following:
e Functional testing
e Non-functional testing
e Regression testing

e Acceptance testing

There are many more types of testing, and each of these has many of its own sub-categories. For

now, it is enough to be aware of these.

Testing is a vital phase in the SDLC as this stage will ensure that your product, both hardware
and software, will not only last the test of time but meet the customer’s needs. A lack of under-
standing of this phase is a deadly trap, as inadequate testing can not only ruin your organization’s

reputation but can lead to legal and, in extreme cases, criminal liability.

Once you have all the testing out of the way, you can move on to what many would consider the

final phase of the SDLC, deploying your product.

Chapter 9 231

Deploying the software

Depending on who you talk to, the deployment phase may be considered the final step in the
SDLC. This is the phase where the magic happens. By that, I mean this is where you allow the

intended user access to the product.

When it comes to PLC programming, this phase can be one or two things. When it comes to au-
tomation programming, this phase can be either installing your machine atits intended location
or simply uploading a new program or patch to the PLC. Regardless, this is where your customer,

whoever they might be, will get to use your product.

For a PLC integrator or machine builder, this phase will typically involve shipping and installing
amachine at a customer site or a production environment of some kind. Ideally, in-depth testing
would have been conducted in front of your customer or operator before you reached this phase,
but if that did not happen, this phase could be easily marred with micro-modifications to the
software and even the hardware at times. If you’re deploying a whole machine, you can expect at
the very least a few days of on-site support and training. Typically, when working out the details,
it’s a good idea to budget for at least one engineer or technician, who can plan to be on-site for

atleast a few days, if not a few weeks, depending on the machine.

In terms of deploying only software, this phase may be a little different. Deploying PLC software
can be somewhat less invasive. In today’s day and age, it is not uncommon for engineers to be
able to remotely upload software to a PLC. If your organization offers a software product for a
specific machine, the deployment phase may simply be uploading a PLC program from a desktop
halfway around the world. On the other hand, if you’re working on something such as a tool or
a library, deploying it might be as simple as pushing your working project to a GitHub repo or
some type of app store where it can be downloaded. Regardless, once you deploy your software,

it’s time to start maintaining it!

Maintaining the software

The final phase of the SDLC can vary based on who you talk to. For example, some consider the
deployment phase to be the final phase, while others like to add a decommissioning phase to
remove old systems. Regardless, the maintenance phase is often considered the final stage in
the classic SDLC implementation. In this stage, you're going to be concerned with monitoring,
fixing, and generally improving your product. In terms of a physical system, this could be fixing
burned-out components or upgrading components such as PLCs, motor drives, sensors, and so
on. In terms of software, this phase usually involves making changes to the codebase, such as

bug fixes, upgrades, logic to support new hardware, and the like.

232 SDLC: Navigating the SDLC to Create Great Code

With the path thatindustrial technology is taking, this phase is radically changing for users who
are using new and advanced computer-based PLCs and technologies in general. Until a few years
ago, it was not unusual to have to send a programmer out to the machine to upgrade the soft-
ware. A task such as upgrading the software for every machine in a factory or for every customer
that owns a model of the machine could easily take weeks or months to complete, especially
for machines in geographically dispersed regions. Nowadays, astute organizations can leverage
automation tools and DevOps practices to instantly upgrade and patch machines around the

world with the click of a mouse.

Many version control systems, such as GitLab, will come packaged with or support a third-party
orchestrator that will allow you to create what’s called a CI/CD pipeline. These pipelines will allow
you to create automation scripts that will do various tasks to your code, such as performing basic
tests and so on, and deploy it to an end user. There are also automation tools, such as Ansible or
Puppet, that will allow you to configure devices remotely. These technologies are very advanced
and are not designed with PLCs in mind, especially PLCs that are not PC-based, and their usage
goes beyond the scope of this book. However, with the proper know-how and investment, these
technologies can be leveraged to drastically cut down on your overall maintenance and even

deployment efforts.

In all, for today’s day and age, the organization that can learn to master these new technologies
and DevOps will shape the future of the automation industry. More importantly, the engineers
who can leverage these technologies and integrate them will be worth their weight in gold, espe-

cially for engineers who are working for organizations that are applying Industry 4.0 technologies.

Understanding the steps of the SDLCis only half the game. Implementing the SDLC is a challenge
in itself; however, there have been a number of methodologies that have sprung up over the years
that have made this task much more manageable. In the next section, we’re going to explore three

commonly used methodologies.

Understanding how to implement the SDLC

Knowing how to implement the SDLC is as important as knowing how to code. In modern-day
software development, there are two core methodologies that are often used to implement a
project. One is called the Waterfall method, and the other is called Agile. To begin our exploration
into implementing the SDLC, we’re going to first explore the older Waterfall method.

Chapter 9 233

The Waterfall method

The Waterfall method, or Waterfall model, is one of the earliest documented SDLC implementa-
tions. Itis a very rigid and error-prone methodology that, if not implemented correctly, can, and
usually will, cost significant time in rework. The Waterfall methodology can best be summarized

with Figure 9.1.

The Waterfall method uses the same core phases as the SDLC and is often depicted as a staircase.
To get to the bottom, you must first descend down each previous step to get to the next. If you
miss one step, you can easily tumble down to the bottom and get hurt. If there are any mishapsin
any of the steps, the project is at risk of failure. To make matters worse, if there are any mishaps,
development will have to backtrack to the phase that caused the mishap, and all subsequent

steps must be redone.

This development methodology sounds like it could be a nightmare, and in many cases, it can be,
especially with large and complex projects. However, this rigidness is often considered a benefit
of the model. The Waterfall model works very well for mission-critical applications, such as
things like space vehicles, medical devices, financial systems, and so on. This methodology is
often considered to be very detail-oriented and document-driven, which makes it great for those
applications and their respective industries. A derivative of this methodology is sometimes used

is called the V-model. In the following section, we’re going to take a quick look at the V-model.

The V-model

A derivative of the Waterfall method is the V-model. In the V-model, sometimes referred to as the
Verification and Validation model, testing is done in parallel with implementation. This allows
defects and general flaws to be uncovered faster and more effectively without the overhead of
the Waterfall method. The flow for the V-model can be viewed in Figure 9.2.

234 SDLC: Navigating the SDLC to Create Great Code

Architectural Design Integration Testing

Figure 9.2: V-model

In this model, a development task on the left side of the V is associated with a corresponding

testing task on the right.

The V-modelis seen as an improvement over the Waterfall methodology, butit’s not the dominant
SDLC framework. Recently, there has been a relatively new model on the block that is becoming

the new norm in implementing the SDLC.

The Agile framework

Agile has, without a doubt, become a major buzzword in the IT world. In fact, Agile has become so
popular that many non-IT industries have adopted it. For example, it has become a staple in the
legal and publishing industries. In its simplest form, Agile is a mindset or framework for working
iteratively and collaboratively to deliver value and quickly adapt to change. In other words, Agile

is like treating a project as a series of puzzle pieces.

In an Agile environment, you will break a project down into meaningful parts that can be com-
pleted in a certain amount of time, called a sprint, which is usually two to four weeks. As new

pieces are delivered, they are assembled until the project is complete.

Chapter 9 235

The key to Agile is collaboration and cross-functionality. For example, one group may be re-
sponsible for implementing welding robots for one assembly line, while another team might be
responsible for the sanding robots of another. Both teams have the skill to do the other team’s
job, but they each have their own responsibility. In essence, these teams are not siloed; rather,

they are feature focused.

To facilitate collaboration and cross functionality, Agile will typically use a series of ceremonies
that attempt to accomplish this. A ceremony is usually a time-boxed meeting with a specific goal.

Common Agile ceremonies are as follows:

e Sprint planning: This phase is designed to pull in the work the team hopes to accom-
plish in a sprint. Typically, there are features in what’s called a backlog that need to be
implemented. During the sprint planning phase, the team will decide on the most ap-
propriate features to complete during the sprint and commit to finishing them during

that allocated time slot.

e Daily standup: The daily standup or daily scrum is a short meeting that is held each day.
The goal of the meeting is to allow engineers to give a status report, highlight any block-
ers that are causing them problems, and generally stay aligned. Most Agile purists will
timebox this meeting to about 15 minutes; however, depending on the size of the team,
it can easily creep into the 30-minute to one-hour range in extreme cases. In my opinion,
this is arguably the most productive meeting because it provides a time when engineers
can seek guidance while providing managers and team leads with a clear status.

e Sprint review: This is a meeting that is typically held at the end of a sprint. The goal of
this sprint is to showcase the work completed and allow stakeholders to provide feed-
back. Potential adjustments are discussed here in relation to the stakeholders’ feedback.
Depending on the length of the sprint, this meeting is usually one to two hours, though
it can go longer, depending on the workload and discussions.

e Retrospective: This is another meeting that is held at the end of the sprint. The goal of
this meeting is to determine what went well and what could be improved for the next
sprint. This meeting should be time-boxed to about one to two hours.

e Backlogrefinement: Thisis an ongoing activity that prepares the backlog (an ordered list
of work items—such as features, bug fixes, and improvements—to be implemented) for

the next sprint by prioritizing items. This is usually a one-to-two-hour meeting.

236 SDLC: Navigating the SDLC to Create Great Code

Depending on the flavor of Agile that you use, there could be more ceremonies as well. It is also
important to note that you don’t have to follow all these ceremonies to be Agile. Agile is a frame-
work, which means you can pick and choose what works best for your team. Many organizations
feel that Agile has too many meetings, while others feel it does not have enough. In short, it can

be customized to fit your needs.

Agile is a cultural thing. This means that it will only work as well as the people who follow it. If
you opt to adopt an Agile environment, you want to roll it out slowly. Rolling the full Agile process
out too fast will cause resistance from employees who are not used to it and can lead to the utter
failure of its implementation. Remember to take your time with implementing the process and

listen to any feedback the team(s) have.

In all fairness, Agile is not for every organization. Most Agile resources will say that Agile can be
for small to large groups, which is very true. However, for very small teams, Agile ceremonies such
as the daily standup can be just as much of a hindrance as a way to increase productivity. Due
to the nature of many automation shops, Agile may not work well, especially if your projects are
relatively short and you have a small overall engineering team (usually less than five engineers).
If the engineering staff for a project is over five people and the project is large enough to be
meaningfully broken down, Agile might be something to explore. In all, whether Agile is right for
your organization is up to you. It has many great features, such as the daily standup and backlog

refinement, but ultimately, the choice to implement Agile is up to your team.

There are many other SLDC implementations, such as the Spiral model, the Iterative model, and
more. For now, we’re going to switch gears and get some practice implementing the SDLC. For

our final project, we’re going to use the SDLC to deploy a simple program!

Final project: Creating a simple temperature
converter

Now that we have explored the SDLC, we are going to apply what we learned and build a full
project with those principles. The following section will be dedicated to building a temperature

conversion program.

Chapter 9 237

Gathering requirements for the program

As we have discussed in this chapter, the first thing we need to do is determine the requirements
for the project. Our goal is to create a temperature converter like the one we built before. The
program will need to be able to convert between all temperature units. We can say our require-

ments are the following:

e Should convert Fahrenheit to Celsius and Celsius to Fahrenheit
e Should convert Celsius to Kelvin and Kelvin to Celsius

e Should convert Fahrenheit to Kelvin and Kelvin to Fahrenheit

With these requirements, we can move on to the design phase.

Designing the program

This temperature converter program shouldn’t be that complicated to build. For the most part,
all we need are a few methods in a function block to pull this off. Therefore, due to the simplicity
of this project, a pseudocode program to flesh out our ideas will suffice. For this project, we can

use a simple function block that we’ll call TempConverterFB, which will house all the necessary

methods to convert temperatures.

For this project, we could use the following:

TempConverterFB Function Block
CtoF method:
CtoF = ((temp * 9) / 5) + 32;
CtoK method:
CtoK = temp + 273.15;
FtoC method:
FtoC = ((temp - 32) * 5) / 9;
FtoK method:
FtoK = (((temp - 32) * 5) / 9) + 273.15;
KtoC method:
KtoC = temp - 273.15;
KtoF method:
KtoF = (((temp - 273.15) * 9) / 5) + 32;

As can be seen in the pseudocode, each method is simply going to be a single line that will perform

a math calculation. With this simple design in place, we can move on to coding it up!

238 SDLC: Navigating the SDLC to Create Great Code

Building the project

Now that we have finalized the requirements and design, we can move on to doing what devel-
opers love to do: writing code. Since we have a decent design in place, we can now easily start
implementing the code. Based on the pseudocode, our program structure will look akin to the

following:

= TempConverterFB (FB)
[F CtoF
[Ctok
[FtoC
[Ftok
[KtoT
[y KtoF

Figure 9.3: TempConversion project structure

Each of these methods will have a single input argument that we’ll call temp. The temp variables
will be of the type REAL; hence, be sure to include that in each of the methods’ variable blocks.
Also, each method will have a return type of REAL and an access specifier of PUBLIC. To implement

these methods, we are going to use the following code:
e CtoF method:

CtoF := ((temp * 9) /5) + 32;

e CtoK method:
CtoK := temp + 273.15;
e FtoCmethod:
FtoC := ((temp - 32) * 5) / 9;
e FtoK method:
FtoK := (((temp - 32) * 5) / 9) + 273.15;
e KtoCmethod:

KtoC := temp - 273.15;

e KtoF method:

KtoF := (((temp - 273.15) * 9)/5) + 32;

Chapter 9 239

This will be all the code needed for our project. The next thing we need to do is test the code.

Testing the program

This program is incredibly simple. For a program of this size and complexity, unless specifically
told otherwise, itis probably easier to unit test the code manually, thatis, input values ourselves
as we run the code. To do this, we need to create a series of simple method calls, record the output

of the program, and compare it to the expected values.
The steps for testing our program are as follows:

1. Add the following variables:

PROGRAM PLC_PRG

VAR
tempConverter : TempConverterFB;
unitl : REAL;
unit2 : REAL;
unit3 : REAL;
END_VAR

2. Next, modify the PLC_PRG file of the program to match the following:

unitl :

tempConverter.FToC(33);
unit2 := tempConverter.FToC(-100);
unit3 := tempConverter.FToC(500);

When the code is run, you should get what’s shown in Figure 9.4:

Device Application.PLC_PRG

Expression Type Value

+ ¢ tempConverter TempConverterFB
unitl REAL 0.5555556
@ unit2 REAL -73.3333358
@ unit3 REAL 260

Figure 9.4: Unit test output

To verify the output, crunch the numbers manually. That is, create a spreadsheet with the equa-
tions and inputs, or simply run the numbers by hand. What you’ll notice is that the values you
calculate should match the program’s output. If all goes well, the program will work, and we’ll

be ready for deployment!

240 SDLC: Navigating the SDLC to Create Great Code

Deploying the project

At this phase, we have tested the program, and we are ready to send it out into the world. For
automation engineers, this usually means shipping your machine or installing your patches.
Depending on what you’re working on, this could also mean deploying your code to a repository

such as GitHub or some other public venue for others to download.

Do it yourself

\/V For this book, we are only going to make the software available on GitLab. As an ex-
ercise, create a new repo, as we did in Chapter 8, and push the project to it. This will

simulate deploying a project to a public repo, as engineers typically do with GitHub.

Maintaining the program

Now that you have a working product that you have deployed in some way, you can look at how
you want to expand it or fix any bugs that may arise in the software. This is a prime opportunity
for you to take the program we built and expand on it while keeping true to the SDLC. Ideas you

can use to expand the program would be to include some of the following:

e Temperature input limits
e Add other unit conversion function blocks

e Improve the general usability of the software

At this point, you should try to think of something to do to modify the software. Whatever you do,
start at the first phase and work your way down to re-deployment. would recommend trying to

add a few different features using this methodology just to get the hang of everything.

Summary

It is pivotal for any software developer to understand the full gamut of the SDLC, as the SDLC is
a guide to properly flesh out software. No matter what you’re doing, you should always follow
the SDLC as closely as you can so that your software will be easy to build, fix, and expand upon

in the future.

Chapter 9 241

This chapter was a crash course in the SDLC, the methodologies that govern it, and the steps that
itencompasses. Of all the chapters, I would argue that this is one of the mostimportant. Too often,
developers get caught up in whatI like to call the code culture of just blindly building things with
no roadmap of where they are, where they’ve been, or where they’re going. Being able to navigate
the SDLC will set you apart from those developers, as in-depth knowledge of the SDLC is what
separates an engineer from a programmer. With these principles under your belt, you can step

out and build software that will be extraordinary.

When it comes to OOP and design, pseudocode alone can be insufficient to highlight the rela-
tionships in a program. Understanding how your function blocks will interact with each other s
very important as your project ages and scales. To highlight these relationships, there is a design
technique called UML that we touched on previously. This technique can be used to show how
your function blocks relate to one another. In the next chapter, we’re going to leverage UML and

use it to design a program!

Questions
1. Whatis Agile?
What are the main ceremonies in Agile?
Define the SDLC.
How many steps are there in the SDLC?
What is the Waterfall method?
What is the most important phase of the SDLC?
Name all the phases in the SDLC.

® N o n ok W N

What is the build phase of the SDLC?

Further reading
o Waterfall model: https://en.wikipedia.org/wiki/Waterfall_model

o Agile Alliance, The 12 Principles Behind the Agile Manifesto: https://www.agilealliance.
org/agilel@1/12-principles-behind-the-agile-manifesto/

https://en.wikipedia.org/wiki/Waterfall_model
https://www.agilealliance.org/agile101/12-principles-behind-the-agile-manifesto/
https://www.agilealliance.org/agile101/12-principles-behind-the-agile-manifesto/

242 SDLC: Navigating the SDLC to Create Great Code

Get This Book’s PDF Version and
Exclusive Exiras
m]

Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

packtpub.com/unlock

10

Architecting Code with UML

In the previous chapter, we explored the SDLC in all its glory. As we learned, designing a system,
whether it’s electromechanical or software, is vital to the success of a project. Throughout this
book, we’ve also used pseudocode as a means of designing our software. Pseudocode is an ex-
cellent design tool; however, the key drawback is that its main purpose is to help us flesh out an
algorithm. It’s true that it can be used for object-oriented designs, butit’s notideal for that task.
The most optimal way to flesh out an object-oriented design is to use a design system called

Unified Modeling Language (UML).

UML is a design tool that can be used to show the relationships between function blocks. In other
words, if each function block in an object-oriented PLC program is a puzzle piece, the UML diagram
is the assembled picture. UML is an excellent tool to help us understand the design, understand

what components rely on what, and avoid costly mistakes in the long run.
To learn about UML, we’re going to explore the following topics:

e Understanding what UML is
e Understanding what UML is used for
e Understanding why UML is important

e The basics of drawing a UML diagram

To wrap things up, we’re going to use UML to design an object-oriented program that will

model a car.

244 Architecting Code with UML

Technical requirements

UML diagrams can be drawn with almost any medium. You can use programs such as Microsoft
Visio, PlantUML, or even a pen and paper. In many brainstorming situations, engineers often
use a whiteboard to flesh out ideas using UML. What method you use for this book is up to you.
However, the diagrams in this book have been rendered with a website called draw.io: https://

app.diagrams.net/.

If you want to follow along and use it, you are free to, but if you feel more comfortable with a
different medium, you can use that. In the world of UML, it really doesn’t matter what you use,

so long as your diagrams convey your program well!

Understanding UML

In its most basic sense, UML is a method of designing object-oriented programs on paper. More-
over, it’s a design tool that allows engineers to map out how function blocks or classes will interact
with each other. UML diagrams also help engineers plan out what methods each function block
will have, as well as their access specifiers. In a well-crafted UML diagram, a method’s return

type and arguments will also be stipulated.

An example of a very simple UML diagram can be viewed in Figure 10.1:

= Plane
+RPMs
+wings()
+engine()
Y
= F-22

-fuelTanksSize

-weapons()

Figure 10.1: A simple UML diagram

https://app.diagrams.net/
https://app.diagrams.net/

Chapter 10 245

A real-world diagram would be more complex; however, what Figure 10.1 demonstrates is the
basic concept of a UML diagram. To really appreciate the concepts surrounding UML, we need

to explore why they are important.

What is UML used for?

An electrical or mechanical engineer would never begin working on a project without an electrical
schematic or blueprint of some kind. A big oversight that many automation programmers, and
even traditional software engineers, make is that they do not invest the time or effort into properly
designing their software before they start writing it. This mentality harks back to software being
treated as a second-class citizen in automation, something that has been explored throughout
this book! Essentially, not using UML to map out your software project is like trying to build an
electrical circuit without drawing an electrical schematic. Can a program be built without a UML
diagram? Sure; however, doing so will drastically increase the probability of flaws occurring in a

system and will likely reduce the overall lifespan of the program.

There are a few types of UML diagrams that can be used for different things. Arguably, the most
common is the class diagram, an example of which is shown in Figure 10.1. As has been alluded to,

this type of diagram is used to demonstrate the relationships between classes or function blocks.
The following are other common types of UML diagrams:

e Sequence diagrams

e Object diagrams

e Component diagrams

e Activity diagrams

e Timing diagrams

e Communication diagrams
e Package diagrams

e Profile diagrams

e Use case diagrams

e State machine diagrams

For this book, we’re going to focus on using class diagrams; however, sometimes, we will use a
stripped-down variation of class diagrams that only reference the function block’s name and not
necessarily the function block components, such as the methods and variables. These stripped-

down UML diagrams are very common in high-level designs and design discussions.

246 Architecting Code with UML

Why is UML important?

Object-oriented projects can quickly devolve into sheer chaos if they are not properly planned.
When not planned out, function blocks can easily turn into dumping grounds for methods. Rela-
tionships between function blocks can easily become ways of side-stepping OOP rules and make
no logical sense while the overall codebase can become nearly impossible to troubleshoot and
maintain. When the SDLC s followed properly and UML diagrams are produced, these difficulties
can be alleviated. By taking a little time upfront and mapping out the relationships and internals

of a function block, copious amounts of time can be saved in troubleshooting and scaling.

At the end of the day, UML is just a tool. Just because you UML out a program doesn’t mean that
your project is going to automatically become a quality codebase. Nonetheless, UML diagrams
can help ensure quality by exposing potential trouble spots and bad relationships between func-
tion blocks, relaying design information to other engineers, and more. Therefore, the next step

in fleshing out UML diagrams is learning how to draw them.

The basics of drawing a UML diagram

As we saw in the previous sections, UML drawings are essentially composed of a series of boxes and
arrows. Based on thatinformation, what can be thought of as a box is representative of a function
block for PLC programs or a class in a traditional OOP language. As explored previously, a quality
UML diagram will contain the methods and variables that are contained in the function block. To

begin our exploration of UML, we’re going to explore how to represent a function block in UML.

Note

\/v Drawing a UML diagram is like drawing an electrical schematic. Everyone will usu-
ally have their own style, and the only real requirement is to ensure the reader can

follow the diagram and implement what is being conveyed.

Representing function blocks in UML

Even though function blocks or classes are very easy to represent, a few details need to be followed
to ensure the function block is represented accurately. To begin our exploration of UML function

blocks, let’s examine Figure 10.2.

Chapter 10 247

F-22

- fuelTankSize : INT
+ fireRocket() : BOOL

+ reloadRocket()

Figure 10.2: F-22 function block

As can be seen, there is some information here that we need to unpack, starting with the function

block’s name.

UML name

The first key piece of information thatis conveyed in a UML diagram is the function block’s name.
Typically, the function block’s name is at the very top of the box. In this case, it’s F-22. This name
should stand out in the diagram. There will usually be many function blocks in a given diagram,
and it can sometimes be hard to pinpoint a specific function block under the best of circumstances.
To help make the function block easier to find, you will typically want the name to stick out. As
such, it is common to have the name in bold or a slightly larger font, centered at the top of the

UML representation to help make the function block easier to pinpoint.

Names are just one piece of information a UML representation of a function block is meant to

convey. Two other vital components that UML helps convey are methods and variables.

Representing methods and variables

The key components in any modern function block are its methods and variables. Therefore, itis
very important to accurately represent these components in the UML diagram. To do this correctly,

there are two general rules you must follow:

1. Variables go below the function block’s name but above the methods

2. Methods go below the variables and are usually the last entities to be defined in the UML

representation of the function block

Another key piece of information that we need to convey in a UML diagram is the access specifier

of a component. In the next section, we’re going to explore how to represent these in UML.

248 Architecting Code with UML

Representing access specifiers
With one of the core aspects of OOP being hiding data/complexity and having the ability to expose

certain function block entities, we need to clearly depict what is exposed and what is hidden in
the diagram. To do this, drafters will usually place a symbol next to the function block component
to represent its access specifier. Typically, the following symbols are used to indicate whether a

function block is private, public, or protected:

e +:Public
e -:Private

e #:Protected

Our function block, shown in Figure 10.2, contains a variable and two methods. In this case, the
fuelTankSize variable has a minus sign by it. This means that the variable is meant to be private.
On the other hand, the fireRocket and reloadRocket methods have plus signs by them, which

means they are meant to be public.

UML data types and arguments

A well-drafted UML diagram will usually have a variable’s data type next to it, and a method
will usually have a return type and arguments. For example, the UML block we have for F-22 has
INT by fuelTankSize and BOOL by the fireRocket method. In this case, the unique method is
reloadRocket, which has nothing by it. In our scenario, this is meant to signal that the method

returns nothing.

Arguments and data types are details that are often overlooked by many engineers as they are
typically not of vital importance to the overarching design and will often change during imple-
mentation. Sometimes, leaving the arguments, variable types, and return types out of the diagram
can make the diagram a little more flexible, as it is often hard to nail down that level of detail in
the design phase of the software. A technique that I like to use involves making a small chart off
to the side that contains the data and return types for function block components. This keeps the
diagram’s layout more generic and will allow flexibility for these changes. It also helps keep the

diagram cleaner as it prevents clutter when there are methods with many arguments.

Throughout this book, we will typically take a shorthand approach to drawing UML diagrams.
For example, to demonstrate things at a high level, we may only use the name of the function
block. As we’ve explored, this shorthand approach is commonly used for brainstorming sessions
and rough outlines. Regardless, one key piece of information that always needs to be conveyed

in the diagram is the function block relationships.

Chapter 10 249

Understanding UML relationship lines

When it comes to drafting UML diagrams, the symbols your rendering system uses may vary.
UML programs are like electrical CAD programs; each program may have slightly different rep-
resentations for the same concept. So, be aware that the design of the symbols that we’re about

to explore may vary a bit from program to program!

The basic UML relationship symbols

As an automation engineer, you will arguably use inheritance and composition the most. Therefore,
we’re going to focus on those two relationships. To start, we’re going to explore how to represent

inheritance in UML!

UML for inheritance

To represent inheritance, we typically use either of symbols shown in Figure 10.3:

r

Extends E}

Figure 10.3: The inheritance symbols

This arrow should point at the parent function block. For example, suppose we’re working on a
bank program. Our bank program may need to support both a savings account and a checking
account. In this case, we can implement the core functionality for both accounts in one function
block and the details of the other types in two other specific function blocks. In this case, the
specific function blocks will need to use the base functionality of the parent. A rough UML dia-

gram would look like this:

AccountFB

Extends Extends

SavingsAccountFB CheckingAccountFB

Figure 10.4: A simplified UML diagram that shows inheritance

Generally, composition relationships will look similar.

250 Architecting Code with UML

UML for composition

The composition relationship has a similar arrow operator. To denote composition, we typically

use the symbol shown in Figure 10.5:

1
<& >

Figure 10.5: Composition arrow

Much like the inheritance symbol, the diamond part of the arrow will point to the composite
function block. Suppose we have a UML diagram for a car. Since a car has an engine, brakes, and

a transmission, the UML diagram would look like what’s shown in Figure 10.6:

- CarFB s

EngineFB BrakesFB TransmissionFB

Figure 10.6: A UML diagram that shows composition

The goal of Figure 10.6 is to construct a car function block. Since the car is composed of a trans-

mission, brakes, and engine, the diamonds from those blocks point to that function block.

Drawing a diagram is only one phase of the UML process. To use a UML diagram, we need to be

able to convert one into code!

Converting UML diagrams into code

To learn how to convert a UML diagram into code, we’re going to take a UML diagram for a vehicle

and turn it into pseudocode that can later be converted into a PLC program.

Chapter 10

251

Figure 10.7 shows a vehicle UML diagram with six function blocks:

- Engine

+ cylinder : INT

Transmission

Brakes

Car

+ wheelCount : INT

+qears: INT + breakType: WSTRING
+ Stop()
= Vehicle
+MPG : INT Fay
>
- revEngine()
- Truck

+go()

+wheelCount : INT

+gof)

Figure 10.7: A vehicle UML diagram

The heart of the program is the Vehicle function block. This function block is composed of an

engine, a transmission, and brakes. Two vehicle types are derived from the Vehicle function

block: Car and Truck.

When it comes to converting UML diagrams into actual code, you’ll want to implement a strategy

to keep yourself organized. Everyone follows a different approach, but in my opinion, the easiest

thing to do is to convert each block one at a time. Therefore, we’re going to start by turning the

three function blocks at the top of Figure 10.7 into pseudocode.

Engine function block

This function block only contains a single public variable:

Function Block Engine

Vars:
Public:

cylinder :

INT

252 Architecting Code with UML

Transmission function block
Similar to the engine function block, this function will also only contain a single public variable:

Function Block Transmission
Vars:
Public:
gears : INT

Brakes function block

This function block is a little more complex; the UML diagram shows that this function block
will have a stop method and a brakeType variable. The variable is pretty standard; however,
notice the method. As we can see, the diagram did not show any logic. This is often considered a
drawback of UML since diagrams of this type will usually only show the overall structure of the
program, not the granular details of what the methods do and how they work. For this example,

we’re going to assume that this function is only going to stop the vehicle:

Function Block Brakes
Vars:
Public:
brakeType : WSTRING
Methods:

stop():
stop vehicle

Vehicle function block

This function block s structured similarly to the Brakes function block in thatit has both variables
and methods. A big difference though, is this function block will contain references to the other
function blocks. Notice that there were no reference variables in the UML diagram; thisis because
those references can be inferred from the arrows. Some drafters will insist on including reference
variables; however, if you follow proper naming conventions and understand the symbols, you

should be able to easily infer the references:

Function Block Vehicle
Vars:
Public:
MPG ¢ INT

transmission: TransmissionFB

Chapter 10

253
brakes : BrakesFB
engine : EngineFB
Methods:
Private:

reveEngine():
rev the engine

use other function block code

Car function block

This function block is a derived function block. To showcase this in terms of pseudocode, we can

use the EXTENDS keyword to signal inheritance. Therefore, we can draft out the pseudocode with
the following:

Function Block Car EXTENDS Vehicle
Vars:

Public:
wheelCount : INT

Methods:
Public:
go():
Make car go

Truck function block

This function block is almost a copy of the Car block. It has the same methods and variables, with

the only differences being the function block’s name and the logic in the go method. This function

block is also derived from Vehicle, and we can represent it with:
Function Block Truck EXTENDS Vehicle
Vars:
Public:
wheelCount : INT

Methods:
Public:
go():
Make truck go

254 Architecting Code with UML

Chapter challenge

Practice makes perfect. To practice what you’ve learned so far, convert the following code into
a UML diagram:

Function Block Engine
Vars:
Fuel : WSTRING
Methods:
Public:
consumeFuel()

consume fuel

Function Block Plane

Vars:
Public:
engine : Engine
planeType : WSTRING
Methods:
Private:
liftLandingGears()
tuck landing gears
Public:

turnPlaneOn()

start plane

Function Block F4Phantom EXTENDS Plan

Vars:
Public:
Weapons : WSTRING
Methods:
Public:
fireRockets()

Fire rockets

Once you've finished this challenge, you can move on to the final project!

Chapter 10 255

Final project: Modeling a program representing
multiple cars

For our final project, we’re going to rework the car example. To do so, we’re going to model a
program that represents multiple cars. This program will model an electric car and an internal

combustion engine-based car.

Getting started

Let’s take a look at the basic requirements for each type of car. For this example, we will assume

that each type of car (each solid bullet point) is a function block.
All cars have the following:

e Asteering wheel
e Tires

e Brakes
All electric cars have the following:

e Abattery
e Acharger

All internal combustion engines have the following:

e Agastank
e Apiston

e Anoil pan

With the requirements established, the next thing we need to do is analyze them to determine

the relationships between the function blocks.

Relationship analysis

Just from the general outline, we can see that an electric car and an internal combustion engine
car are both cars. This means that these function blocks have an “is-a” relationship with a Car
function block. Therefore, for these two functions blocks we will utilize inheritance with a more

abstract Car function block.

Analyzing the requirements further, we can see that all cars have a steering wheel, tires, and brakes.
Notice the “has-a” relationship. This means that for these function blocks, we will use composition.

If you use this same logic for the other bullets, you’ll see that they all share the same relationship.

256 Architecting Code with UML

Relationship summary
The relationships for the function blocks can be summarized as follows:
e Car: This will be composed of the brakes, tires, and steering wheel blocks. This function
block will serve as a parent for both the electric and the internal combustion engine car.

e Electric car: This will be composed of the battery and charger function blocks. This func-

tion block will also inherit from the Car function block.

e Internal combustion engine car: This function block will be composed of the gas tank,
piston, and oil pan function blocks. Like the electric car, this function block will also

inherit from the Car function block.
Now that all the relationships have been fleshed out, we can create the UML diagram.

Basic UML diagram

Figure 10.8 is a general representation of the program.

SteeringWheelFB BrakesFB TiersFB

&> CarFB

BatteryFB |&—] T—

PistonFB

ElectricCarFB ICECarFB

y [

[

OilPanFB

ChargerFB <

GasTankFB

Figure 10.8: Skeleton diagram

As can be seen, all we have implemented are general function blocks and their relationships. As
can be deduced, this diagram does not contain any methods or variables. This mostly stems from

no methods or variables being stipulated.

Chapter 10 257

Chapter challenge

For the final challenge, redraw the diagram so that it includes the following function block at-

tributes:
e Steering wheel:
e Methods:

e Public:directionToGo(WSTRING)

e Private: honkHorn (WSTRING)

e Brakes:
e Methods:
e Public: stop()
e Tires:

e Variables:
e Public:make : WSTRING
e Car
e Methods:

e Private: rev()

e Public: shift()
e Electriccar:
e Variables:
e Private: type : WSTRING
e Internal combustion engine car:
e Variables:
e Private: gasType : WSTRING

For the charger and battery function blocks, add two private variables of the WSTRING type. For
the combustion engine block, add variables for oilPan and piston that are of the WSTRING type.

Finally, add a private variable called tankSize and a getter and a setter method, respectively.

258 Architecting Code with UML

Summary

This chapter has been a crash course on creating UML class diagrams. In this chapter, we explored
what UML diagrams are, what they are used for, how to draw them, and more. UML is a great
design tool that can help flesh out things such as function block names, method names, and

variables. It is also a very handy tool for fleshing out function block relationships.

Many engineers skip designing their programs. For a large project such as one that would represent
a piece of industrial equipment, thisis a recipe for disaster. It is very important to flesh out function
blocks and their relationships. Not doing so can mean introducing function blocks with illogical

relationships, names, and more, which can utterly kill the long-term survivability of a program.

Regardless of whether you use UML, no program is ever perfect. There will always be misunder-
standings, code that does not work, and so on. So, in the next chapter, we’re going to explore

testing and troubleshooting code!

Questions
What does UML stand for?

—_

Name three types of UML diagrams.

What order is information defined in a UML function block?
What symbol is used to represent inheritance?

What symbol is used to represent composition?

Why is UML important?

What s class diagram UML for?

What symbol is used to denote a private function block?

¥ 0 N v A WD

What symbol is used to denote a public function block?

10. What symbol is used to denote a protected function block?

Chapter 10 259

Join our community on Discord

Join our community’s Discord space for discussions with the authors and other readers: https://

packt.link/embeddedsystems

https://packt.link/embeddedsystems
https://packt.link/embeddedsystems

11

Testing and Troubleshooting

No code will ever work right on the first go. No matter how good a programmer someone is, there
will always be errors in a program. This is where testing and debugging come into play. Testing and

debugging are vital concepts in software engineering and, by extension, automation programming.

The terms testing and debugging are often used interchangeably, but they refer to two radically
different techniques that are designed to tackle two different problems. This chapter will explore

and contrast the two concepts.

The goal of both testing and debugging is to produce high-quality code that works. To understand
this, we’re going to explore the following concepts:

e The difference between debugging and testing

e Verification and validation

e Various types of testing

e Debugging tools and techniques

e How to use systems such as ChatGPT to debug code

Finally, to close out the chapter, we’re going to test and debug a program!

Technical requirements

To follow along with this chapter, you're going to need the code, which can be downloaded
from this URL: https://github.com/PacktPublishing/Mastering-PLC-Programming-Second-
Edition/tree/main/Chapter%2011.

https://github.com/PacktPublishing/Mastering-PLC-Programming-Second-Edition/tree/main/Chapter%2011
https://github.com/PacktPublishing/Mastering-PLC-Programming-Second-Edition/tree/main/Chapter%2011

262 Testing and Troubleshooting

Also, to follow along with the Al aspect of this chapter, you're going to want to create a ChatGPT
account if you do not already have one. You can do that here: https://openai.com/chatgpt/

overview/.

If you have experience with another Al platform, such as Copilot, you can use that as well.

Difference between debugging and testing

Testing and debugging are two terms that are often used interchangeably. It’s not uncommon
to hear an engineer say that they need to test their code when they mean they need to debug it,
and vice versa. The first step in truly understanding the differences between the two concepts is

to explore what debugging is.

What is debugging?

Debugging is the art of finding and removing bugs from your code. Every developer will debug
many times throughout the life cycle of a program. It is very rare for a program to compile and
run correctly the first time, especially after a long day. It is not uncommon for a developer to
accidentally miss a period, comma, or misspell a word when writing their code. On top of that,

even if the code does compile, there is no guarantee it will run as intended.
Common types of bugs are as follows:

e Syntax errors: This type of bug is triggered by invalid syntax. Syntax errors will usually
prevent your program from compiling and running. Normally, CODESYS, as well as other
integrated development environments (IDEs), will produce a red squiggle line under

the offending syntax.

e Logic errors: Similar to syntax errors, logic errors are very common. These are issues in
your logic that will cause wrong outputs, wrong computations, and so on. These bugs can
be alittle more dangerous than syntax errors because you won’t know about them until
the program runs, and since these are caused by compliant syntax, you usually won’t get
ared squiggle line. These defects can cause infinite loops, crashes, and software failures,
which, in terms of automation, will cause machine failures and other potentially dangerous
situations. These are the bugs that are best found via a debugger tool.

e Functional errors: Functional errors are bugs in the program that prevent the software
from working as expected. For example, a functional error may come in the form of a
button that does not turn on the correct assembly line when pressed. These errors are
not the result of bad syntax, nor are they the result of logical errors. Depending on the

severity of the bug, the issue can range from a minor inconvenience to dangerous machine

https://openai.com/chatgpt/overview/
https://openai.com/chatgpt/overview/

Chapter 11 263

malfunctions. Normally, these bugs are discovered during the functional testing phase
of the machine’s development. In other words, these bugs are usually discovered when

you're testing the machine to ensure it works as expected. Debugging tools can also help
find and fix these defects.

Debugging is concerned with finding these errors and removing them. This is in contrast to testing.

What is testing?

While debugging is the art of finding defects in a program, testing is the art of ensuring that a
program works the way it is intended to. This may seem similar to debugging, but it isn’t. An
example of debugging would be to figure out why a program isn’t compiling. In contrast, testing
is the art of ensuring the system can return a valid value. In other words, suppose you're working
on a packaging robot; testing would be concerned with ensuring the robot packages sacks with
the correct weight of material and pushes them down the correct line. There are various types of
testing, and each type has its own goals to ensure the software works. In the following section,

we’re going to explore these types.

Verification and validation

Testing generally falls into two categories. One is known as verification testing and the other is

validation testing.

What is verification testing?

Verification ensures that the software is high quality and works. When you employ some form
of validation testing, you're ensuring that the program is as bug-free as possible and works as
expected with no issues. Verification boils down to answering the question, are we building the

system correctly?

What is validation testing?

Validation is the process of ensuring that the program solves the original problem. In short,
validation is the process of making sure that the program meets the user’s needs. In contrast to

verification, validation boils down to answering the question, are we building the right system?

Engineers, including me, will often try to box different types of testing into verification and
validation testing. However, whether a particular type of test s a validation test or not is mostly
theoretical, and there are gray areas. Some types of testing, such as regression testing, can often
fit in both categories depending on the context they are being used in. In the next section, we’re

going to explore some of the basic types of testing and their use cases.

264 Testing and Troubleshooting

Various types of testing

Some types of testing are more common than others. However, each type of test has its use and

will attempt to determine whether an aspect of the system meets its requirements.

Exploring test cases

The backbone of any type of testing is the test case. A test case is essentially a procedure for testing
a unit of the system. A test case can be thought of as a record of sorts that details the following

information:

e Thetestdate

e Who performed the test

e The code blocks that were tested (if possible—not necessary)
e Theinputvalues

e The expected output

e The actual, recorded output

e Whether the test passed or failed

You technically don’t have to keep a physical copy of the test results, at least for many industries.
However, some industries will require you to keep records, especially when it comes to mis-

sion-critical applications such as medical devices.

In terms of producing a test case, you don’t need anything fancy unless it’s specifically requested.
For many automation organizations, simply using a spreadsheet that contains the aforementioned
information will suffice. However, some industries, such as the medical and banking industries,
may require you to use specialized software. Remember, though, that in terms of automation,

this is not typically the norm.

To fully understand why we need a test case, we need to understand what a test is. To do this,

we’re going to explore what is arguably the most common type of testing: unit testing.

Unit testing

One of the most common types of testing is unit testing. Unit testing is testing code blocks that
provide meaningful value. This can be testing functions, methods, or whole function blocks.

Generally, you are testing the smallest block(s) of code that can return a meaningful result.

Chapter 11 265

When possible, I like to test at the method or function level, especially when these blocks are public.
If possible, you will want to find and use a framework that will allow you to write automated unit
tests; however, as mentioned earlier, in automation programming, it is not always possible to do
this due to the nature of the industry. Therefore, you will often need to test manually. Usually, what
I like to do—and this could be argued to be a bad practice—is to modify my code with a series of
output statements or return values to track the code flow and output, respectively. For example,
if 'm working on a math library that consists of add, subtract, multiply, and divide methods, I
would normally feed in simple test values and watch the outputs in the variable window as we

have done so many times in this book.

Note

\/V When unit testing, it is a good idea to either find a unit test form online or create a
spreadsheet that will keep track of the information that was noted in the Exploring

test cases section.

When it comes to unit testing, you want to shoot for at least 80% coverage. This means that, at
a minimum, you want to ensure that at least 80% of the code is tested with your unit tests. This
does not mean that one test has to cover 80% of your code. What it means is that you have a series
of tests that, when combined, have run atleast 80% of the code in the codebase. To calculate your

code coverage, you would use the following equation:
Code Coverage = (Number of lines executed by unit tests/Total number of lines in program) *100

Depending on what you’re working on, 80% may not be enough. For example, if you’re working
on a medical device or a device for the military, the code coverage may need to be increased de-
pending on industry standards. You will also want to run the same unit test multiple times with

different values, including values that may accidentally be entered.

Note

\/V Remember that 80% code coverage is usually the minimum amount of code coverage
for a project. While some systems may require more than an 80% code coverage

rating, it is usually rare to see anything above 90%.

266 Testing and Troubleshooting

Dead code and unreachable code can act as a gotcha for this metric. Essentially, dead code and
unreachable code cannot run but are still in the codebase. This means that those types of code
will be factored into the calculation, especially if static code analysis tools are used, which in turn
can throw off your coverage metrics. As a result, you could have a much higher code coverage
percentage, but your metrics might appear to be much lower. This is a prime example of why it
is important to remember that, in terms of code, if you don’t use it, lose it! Where unit testing is

largely about testing the actual code, functional testing is more about testing the system as a whole.

Functional testing

Put simply, functional testing validates your software—in the case of automation, hardware too,
against the requirements that were set out during the requirements phase. For this type of testing,
you want to use someone who might be familiar with the overall gist of the machine but probably
not someone who spent a lot of time on the code. This isn’t always possible, but it is ideal if you
can manage it. Generally, functional testing is considered a form of black-box testing. During
this phase of testing, you are not concerned with the code anymore; you are concerned with the
behavior of the code and how it relates to the overall objectives of the project. This means you

are testing the machine in the manner that the operator would use it.

For this type of testing, you will also need test cases, but these test cases will be overarching and
system-related. For example, instead of worrying about how fast, secure, and so on your code is,
you are going to be concerned with the outcome of running what would be considered a real-world

process. Suppose you’re programming a packaging machine and your machine does the following:

1. Opensempty bags

Fills the bags with cement
Seals the bags

Weighs the bags

Sends bags with the correct weight to a holding area

S R

Sends bags of the wrong weight to a recycling bin
To initiate this process, you will need to input the following information into the HMI:

e Inputthe number of bags into the HMI
e Select cement products to bag

e Inputthe weight

Chapter 11 267

The actual test would consist of ensuring that the correct number of bags were produced, the

proper cement was bagged, and the bags were of the correct weight.

Now, all of these testing methods that we have explored thus far are used when the product is
being developed—in other words, pre-deployment. However, what about when an application

has been changed after deployment? In that case, you need to consider regression testing.

Regression testing

Another kind of testing that we need to explore is regression testing. Regression testing is, for
the most part, testing your system after the program has been changed in some way. This change
may be an upgrade to the software, a bug fix, or any other time a developer changes aline of code
in the system. This is very important in the automation world as software usually changes as the
customer’s processes change. Usually, if a plant or other machine owner decides they are going
to change their process, they will update the PLC software to accommodate the new process.
Requested changes will be either a bug fix or a software modification, such as changing a feature,
adding a feature, or making any change to the codebase. In short, the moment you change or add

any line of code, you will need to retest your program.

Luckily, when it comes to regression testing, you already have most of the test cases, especially
if you’re just fixing bugs that are found in the program. The goal of regression testing is simply
to ensure that the modified code does not negatively impact the code that was not changed. If
you’re just fixing bugs, you can use the same test cases you used to validate the system before you
deployed it, and if you are adding new functionality, all you have to do is create new test cases for

the newly added functionality to use in conjunction with the original test cases.

Note

\/V Regression testing blurs the lines between validation and verification testing. Some
sources cite it as a form of verification testing, while others cite it as a form of vali-

dation testing. It will boil down to the context for which you are using it.

The next form of test to explore is integration testing!

268 Testing and Troubleshooting

Integration testing

Integration testing is pretty straightforward in concept. Typically, your machine will have at
least two software components. You will more than likely have an HMI and the PLC code. In
some cases, you may have other software components, such as databases, logging software, or
any number of other software components. In any case, you will need to make sure the compo-
nents are seamlessly working together. This is where integration testing comes in. Much like unit
testing, there exist many frameworks for integration testing; however, much like unit testing, in

my experience, integration testing is often done by hand in automation.

Integration testing is testing modules. Though integration testing is traditionally concerned with
software components, if your software is controlling hardware or integrating with the hardware,
youmust factor thatin. This can add an extra layer of complexity to integration testing as a failed
test case may be caused by either a faulty software component or a faulty hardware component.
You will need to have an understanding of both the overall software components and hardware

components to be able to troubleshoot problems that integration testing uncovers.

To conduct integration testing, it is common to write test cases that collect similar information
that is collected in the unit test cases. However, you want to make sure that your tests will en-
compass all the modules you’re trying to test. In other words, if you're testing the integration
between your HMI and PLC code, you will need to write test cases that will encompass the HMI

clicks and the PLC output. Consider the following steps:

1. Navigate to the Homing screen.
2. Click the Home All button.

3. Verify that the motor positions in the PLC variables area are all 0.

These steps are for a homing test. All we are doing is testing the integration of the HMI’s homing

feature and the PLC code. In this case, we are just testing that the HMI and PLC are interacting
properly.

Testing can be carried out either manually or via some type of automated means. In the next

section, we’re going to explore the differences between the two.

Automated versus manual testing

There is a difference between automated and manual testing. Manual testing is essentially car-
rying out the test cases by hand. Thatis, you're following the steps manually by pressing buttons
on an HM]J, inputting data manually, or even manipulating the hardware by hand in the case of

automation.

Chapter 11 269

Manual testing can be error-prone because it requires a human to carry out the tasks. This means
that the person can make mistakes, input wrong data, or even execute the steps out of order. These
hiccups can result in erroneous results, which could result in false positives in terms of defects,

or worse, false negatives.

When it comes to testing, it is usually considered safer to use what is known as automation test-
ing, thatis, creating programs that can carry out the test cases and collect the data automatically.

Typically, these tools will format the results of the test in a cohesive report.

Testing tools are becoming common in automation programming. Though they are becoming
common, they are not as common as they are in the traditional programming world. Often, these
tools are more limited to their traditional counterparts; however, certain aspects of a system,
such as an HMI, that are derived from traditional technologies such as C/C++, Java, or Python,

can utilize common testing tools.

There are also tools that can directly interact with user interfaces such as an HMI. These tools
can be very useful in the automation realm because they can carry out a plethora of test cases
by interacting directly with the digital controls. The PLC code itself can be tested indirectly with
these tools as well. You can create a simple user interface and have the testing tool digitally in-

teract with the controls to test the PLC program.

Finally, if you are skilled with traditional programming languages, you can create your own scripts
using languages such as Python. How these tools would work is up to your imagination, but in
theory, you could produce very powerful and very dedicated testing systems. Doing so would

require a hefty investment both financially and in terms of effort.

When it comes to testing, it is typically better to use automated tools when possible. Automated
tools will typically produce more accurate results, will not make mistakes in terms of order, and, of
course, will produce a report. In all, testing tools are just now becoming viable in the automation

world, especially for PLC programs, so they are limited and often expensive.

One automated tool that CODESYS offers for automated testing is called Test Manager. Test
Manager can be used to create automated tests for CODESYS applications and libraries. Though
a very powerful tool, it is a proprietary plugin but comes packaged with the tool bundle for the
CODESYS Professional Developer Edition.

Testing is just one facet of finding and eliminating defects. As stated before, testing is more for
finding defects in the behavior of the system. However, when it comes to development, we also

need to find defects in our code; that is, we need to explore debugging!

270 Testing and Troubleshooting

Debugging tools and techniques

Debugging is the art of finding defects in our code. Debugging is mostly focused on finding and
fixing issues while the code is under development. Debugging is as much an art as it is a science.
Effectively debugging a program takes a lot of practice and a deep understanding of certain tech-

niques. With that, the first technique we’re going to explore is the debugging process!

Breaking down the debugging process

Debugging a program is a process. A good developer will never jump in and start modifying code
without a clear understanding of the bug and a roadmap to a solution. Depending on which arti-

cles you read, the number of steps may vary, but the general gist of the steps does not.
The general process for debugging a system is as follows:

1. Reproduce the problem: The first step in troubleshooting a bug is reliably reproducing
it. Before you can start troubleshooting the problem, you need to be able to trigger the
defect on command. As a PLC programmer, this can often be difficult due to the hard-
ware components. Often, a full machine setup is necessary to fully reproduce the bug. All
things considered, it is of vital importance that you can reproduce the bug at will before
proceeding. If you cannot reproduce the problem, the ultimate patch that you will create

may not work as intended.

2. Isolate the problem: Assuming that the defect stems from the software, the next step is
to isolate the problem. Isolating the problem in this context means figuring out the code
thatis causing the issue. This can be done in a variety of ways. One of the most common is
atechnique called print debugging, and another uses a tool called a debugger. Depending
on your experience with the codebase and the possible defect, this can be a daunting task.
This phase can easily take the most time in the debugging process as you may have to
sort through the whole codebase to find the offending code. To make matters worse, it is
not unusual for the defect to stem from logic in multiple files, or multiple files will need

to be modified to fix the issues.

3. Analyze the problem: Once you find the problem, the next step is to understand it. Much
like the isolation step, this can also be a very time-consuming task, especially if you're
working on a patch for an existing system. Often, you will be bouncing between all the
past steps to fully analyze and understand the issue. Generally, this is what I refer to as
playtime. During playtime, a developer will have to play with the code by passing differ-
ent values, triggering different conditions, and so on, to fully understand the behavior

of the offending code.

Chapter 11 271

4. Fix theissue: Once you understand the problem and what is causing the issue, you can
proceed to fix the defect. Developing a patch for a system requires an in-depth under-
standing of the system and how it is intended to work. In short, this is where you’re going
to implement your solution. If the problem is hardware-related, it is very tempting to
try to compensate for the issue with a software patch. This is one of the worst things
you can do as a PLC programmer. The program should assume it is controlling properly
functioning hardware. If you modify the source code to compensate for malfunctioning
hardware, your program is now only compatible with that particular component. This
means that once the faulty hardware is replaced, the source code will have to be restored
to its original state, which can be challenging depending on how much code has been
changed. Malfunctioning parts can be left in machines for many years, and it’s easy to
forget about the patches that were used as workarounds. When parts are replaced, bugs
will be reintroduced into the system. In short, this type of modification should be avoided
at all costs; it is never okay to compensate for malfunctioning hardware, such as broken

encoders, poor motor or motor drives, and sensors, by changing the source code.

5. Validate your solution: The final phase in debugging your program is testing your fix. To
ensure your solution fixed the problem, you need to verify that the system works as in-
tended. This phase will require a working knowledge of the way the machine is intended
to work, as well as the issue you were trying to fix and how to trigger the issue. If your
patch does not work as intended, you should start over from step 1. If you have pre-written
test cases, you should use those to test the patch. However, depending on where and what
you’re working on, you may not have that luxury; therefore, you should test it the best you
can. When testing your patch, itis important to ensure that the patch didn’t accidentally
break something else. This means it is important to thoroughly test not only the feature
you’re patching but also the whole system. If the machine is deployed or is functioning,
itis a good idea to run a full cycle on the system. This means you should run at least one

test production run on the system.

These steps will only provide a roadmap for troubleshooting a problem. The true trick in debug-
ging is to find the bug. Depending on your experience with the codebase and the complexity of

the codebase, this can be challenging.

272 Testing and Troubleshooting

Understanding the hardware pitfall

A major pitfall you will often see as a PLC programmer is faulty hardware mimicking software
defects. The term that I like to use for these is broken software. Essentially, the “broken software”
cliche stems from faulty hardware, such as a bad sensor or faulty circuit breaker, sending erroneous
signals to the PLC. This can usually cause the system to behave in unexpected ways. Common

issues that can cause these problems are the following:

e Poor power supplies

e Faulty sensors

e Short circuits from debris
¢ Bad and oxidized contacts
e Extreme temperatures

. Dust

e Component drift, such as capacitors decreasing due to drying out

For any system, faulty hardware can often appear to be defects in the software. Therefore, if the
system has been deployed for a while and there have been no issues or software updates, faulty
hardware can oftentimes be confused with undiscovered bugs. It is very important to remember
this when you’re going through the debugging process because in systems that are composed of

both hardware and software, the hardware is sending the states to the software!

Once you have figured out that the problem is actually software-related, you need to employ

strategies to find and fix the problem. The easiest of which is a technique called print debugging.

Practicing print debugging

The go-to technique for many developers to find and eliminate bugs is using what’s called print
debugging. This diagnosis technique is essentially putting messages in your code that give you
clues to what’s going on during the codebase’s execution. This could involve placing markers in

your code to see exactly where a program is failing.

In traditional programming, print debugging usually involves using that language’s print state-
ments to display information either to alog, the terminal, or some type of output that the developer
can view. When it comes to PLC programming, where there sometimes isn’t a typical terminal
to display output to, you can create a STRING or WSTRING variable to hold messages that will act

as a roadmap to determine where the program is at.

Chapter 11 273

To demonstrate this concept, we need to see an example. Suppose that we have a simple divi-
sion program. The program itself has four variables called division, dividend, divisor, and

notLessThanl. The variable section for this program will look like the following:

PROGRAM PLC_PRG

VAR
division : REAL;
dividend : REAL := 4;
divisor : REAL := 2;
notLessThanl : BOOL;
END_VAR

The main logic will consist of two variables being divided and the quotient being assigned to
the third. If the third is less than 2, it will mutate notLessThan1 to TRUE. The main logic for this

operation will be as follows:

division := dividend / divisor;

IF division < 1 THEN
notLessThanl := TRUE;
ELSE
notLessThanl :
END_IF

FALSE;

The gist of this program is very simple; however, when the program is executed, we get an erro-

neous result.

@ division REAL 2
® dividend REAL 4
divisor REAL 2
% notlLessThanl BOOL

Figure 11.1: notLessThanl program output

As can be seen, notLessThanlis set to FALSE. This is not the expected output for the program. The
expected output should be TRUE. This means there is a defect in the software. For a problem such

as this, print debugging can be a good technique to find and eliminate the defect.

274 Testing and Troubleshooting

To start the print debugging process, the first thing we need to do is create a string variable. To

do this, we’ll need to include an extra variable, as in the following code snippet:

PROGRAM PLC_PRG

VAR
debugMsg : STRING(20);
division : REAL;
dividend : REAL := 4;
divisor : REAL := 2;
notLessThanl : BOOL;
END_VAR

In this case, a variable called debugMsg was added to the variable list. This variable was declared
as a string that can contain 20 characters. We could have also used a WSTRING, but I like to use a
string with a fixed value to save on resources. I also use this type as a simple reminder to myself
to remove it when I'm finished debugging as I personally use WSTRING more due to its increased

flexibility.

STRING allows you to adjust the number of characters to compensate for the amount of information
you want to display; however, if you are going to display more than 20 characters, you might as
well use a WSTRING type. It is also a good idea to give the variable a name that is indicative of its
purpose as a debugging variable. Another good idea is to add a reminder comment next to the

variable that reminds both you and other developers to remove it when the debugging is done.

The next step in print debugging is setting up your print statements or, in the case of PLC pro-
gramming, adding your message to the program. When it comes to PLC programming, this can
be tricky. A good rule of thumb is to work inward. This means it is typically a good idea to place
your debugging variable at the top of the code you want to analyze and at the bottom. You will
then move them inward toward each other until you find the defect. When it comes to print
debugging, you can and often should use multiple variables for complex programs, especially if
your code has a lot of control statements such as IF statements or loops. This will help optimize

the amount of data that you collect in each run.

For this example, we’re going to put the message variable at the beginning and end of the program.
This follows the best practice that we just established and will let us know where our code is caus-
ing the issue or whether we have a more complex problem, such as a corrupted file or corrupted
cache. For this example, modify the code to match the following snippet:

debugMsg := 'start’;

division := dividend / divisor;

Chapter 11 275

IF division < 1 THEN
notLessThanl := TRUE;

ELSE

notLessThanl := FALSE;
END_IF
debugMsg := 'end’;

This code has our debugging statements wrapped around our suspected erroneous logic. If there
is a fatal problem that is not related to our code, the debugMsg variable won’t say anything, and
chances are you won’t be able to press the Play button or run the program at all. If there is a prob-
lem with our logic and the program starts, the debugMsg variable will say start. Finally, if there

are no problems and the program executes without error, debugMsg will say end.

Expression Type Value
debugMsag STRING(20) ‘end’
& division REAL 2
dividend REAL 4
divisor REAL 2
& notlLessThanl BOOL FALSE

Figure 11.2: Print debugging output

The debugMsg variable is set to end. This means that our code is executing; as such, we can
deduce that we have an issue with our logic. The next step would be to move the end message
to another place in the code. This is where the strategy of moving the debug variables toward

each other comes in.

If you study the code, you will notice that the notLessThanl variable’s state is changed in only
one place—in the IF statement. There are also two branches in that conditional statement—the
main IF statement and an ELSE statement. For situations such as these, it is a good idea to put a
debugging statement in both conditions to see the path that the code is taking. To do this, you
can modify your code to match:

debugMsg := 'start’;

division := dividend / divisor;

IF division < 1 THEN

276 Testing and Troubleshooting

notLessThanl := TRUE;

debugMsg := 'in main if';
ELSE

notLessThanl := FALSE;

debugMsg := 'in else';
END_IF

The code will change the debugMsg variable to in main if when the division variable is less
than 1 and in else when the division variable is greater than 1. When this code is run, you

should get the following output:

Expression Type Value
@ debugMsg STRING(20) in else’
@ division REAL 2
dividend REAL 4
@ divisor REAL
@ notLessThanl BOOL

Figure 11.3: debugMsg output

For this run, the debugMsg variable came out as 'in else'. This means that the divisor is not
getting set properly. Since there is only one place in the code where that is getting set, we can
assume that we have values swapped in our variables. If you look at the variable list, you should
see that by swapping the divisor and dividend, we’ll get a value thatis less than 1. After swapping

the value, the output will be as follows:

Expression Type Value
debugMsg STRING(20) in main if’
& division REAL 0.5
@ dividend REAL 2
@ divisor REAL -+
& notlLessThanl BOOL

Figure 11.4: Corrected variable assignments

In this iteration of the program, you can see that the debugMsg variable is set to 'in main if"',

and the notLessThan1 variable is set to TRUE. In other words, the program is working as intended.

Chapter 11 277

Note

It is important to understand that this was a demonstration of print debugging.
The true value of the divisor variable was shown in all the screenshots. Though
\G/\/ the values are shown, when working with a non-trivial program or logic, it is not
so straightforward. Print debugging is a very valuable technique to understand. In
short, no matter what you’re working on, you should know how to print debug. It
is strongly recommended that you put together some trivial programs and debug

them with the technique, as it is a vital skill to master.

Print debugging can be overkill sometimes. Sometimes you may get lucky, and you mightbe able

to figure out a defect just by visually analyzing the code.

Understanding visual analysis

Major problems can often be caused by the smallest of issues. If your program is small, and you
can easily flip through the code files and digest the code, with practice, you can sometimes spot
the problem. For example, assume we have a program that will not run. Let’s revisit a modified

version of the last example:

division := dividend / 9©;

IF division < 1 THEN

notLessThanl := TRUE;
E[SSE

notLessThanl := FALSE;
END_IF

We can see that we have a division-by-zero issue on the first line. In this case, print debugging
would be sheer overkill and do nothing but add overhead to our code and possibly introduce more
defects or code rot. There are also times when there may be a defect so severe that the program
will not start. In cases such as these, you will have to rely on your eyes to scan the often seemingly

incoherent error information from the compilation system.

278 Testing and Troubleshooting

Fatal bugs that prevent the code from compiling or running will typically come from the following:

e Syntax errors
e Matherrors
e Incorrect names

e Unhandled errors

Many advanced IDEs, such as CODESYS, can usually give you visual clues to issues such as these.
These indicators usually come in the form of red squiggle lines. However, not all development
systems have a feature such as this, so you need to get used to using your eyes, especially if you're

integrating with new and advanced technologies that are prevalent in Industry 4.0.

What we have explored can be thought of as manual debugging. That is, we are not using any
tools; we are only using certain techniques. For the most part, you will rely heavily on these;
however, most IDEs have tools built in to help you debug your code. These tools are typically

called debuggers. In the next section, we’re going to explore how to use the debugger in CODESYS.

Exploring debuggers

A debugger is a program that allows you to debug your PLC code. Most modern IDEs have built-
in debugging tools, and CODESYS is no different. So, when you experience an issue that is too

complex to troubleshoot with print debugging, it is vital to use this tool.

Generally, most debuggers work similarly. Thatis, the rules that we’re about to explore will apply
to most IDEs. Though the general steps will be the same, the overall steps to use a debugger in

a different system may vary.

Exploring breakpoints

The key to using a debugger is the concept known as breakpoints. The best way to think of
breakpoints is as pauses in the code. Essentially, you use a breakpoint to halt the execution of

the program at a certain line without terminating the program.

Note

V4 Breakpoints will only pause the program when itis under development as they have
\E/‘ to be enabled. If the program has a breakpoint in it and the program is uploaded
to the PLC, it will generally be ignored and not affect the execution of the program

under production conditions.

Chapter 11 279

To create a new breakpoint, all you have to do is log in to (but not run) the application and right-
click on the line you want your breakpoint to be at. Once you select that line, select New Break-

point. This will open up a window where you create your breakpoint, as shown in Figure 11.5:

Conditon Location Execution Point Settings

Location
POU PLC_PRG [Device: PLC Logic: Application] v
Position Line 2, Column 1 (Impl)

Instances

Instances selected: 0

[_) Enable breakpointimmediately ‘ oK Cancel

Figure 11.5: Breakpoint Properties window

The dialog shown in Figure 11.5 is used to set the properties of the breakpoint. The default Lo-
cation tab is where you select where the breakpoint is going to be. The POU section is the file in

which the breakpoint will be placed, and the Position section is the line the breakpoint will pause.

To demonstrate breakpoints, we’re going to troubleshoot the program that we debugged with

the print debugging technique.

To do this, reset the variables in the program to their original state:

PROGRAM PLC_PRG

VAR
division : REAL;
dividend : REAL := 4;
divisor : REAL := 2;
notLessThanl : BOOL;
END_VAR

Similar to the original error, we will have the dividend and divisor swapped.

280 Testing and Troubleshooting

For this demo, we’re also going to use the same logic as we did before. For this demonstration, the
breakpointis in the code with the red box around it, which is the line that does the computation.
Now, log in, right-click that line, select New Breakpoint, and set Position to line I. When you are

finished, your code should look like the following.
QO fjl'\.'ialz_ 0.5 1= dividend 2 / divisor 4 ;

IF division| 05 | < 1 THEN
notLessThanl R := TRUE;
ELSE
notlessThanl BEIE := FLLSE;
END IF

Figure 11.6: Breakpoint on line 2

Notice the red outline around the firstline. This red outline is an inactive breakpoint. Essentially,
there is a breakpoint there, but it is turned off. This means that when the program is run, it will
run as if there were no breakpoint present. For the breakpoint to pause the program, log in and
right-click on the line that is highlighted in red. You will see an option called Toggle Breakpoint,
and depending on whether the breakpoint is enabled, you will either see Enable Breakpoint or

Disable Breakpoint. The functionalities of these options are as follows:

e Toggle Breakpoint: Toggling the breakpoint will either enable or disable it. If the break-
point is enabled when this button is pressed, it will disable it, and vice versa.

¢ Enable Breakpoint: This option will only be available when the breakpoint is disabled.
When enabled, the breakpoint will act as a pause in the program. When a breakpoint has
been enabled, the circle next to the line will be solid red.

e Disable Breakpoint: This option will only be available when the breakpoint is enabled.
This option will disable the breakpoint, and when the program is run, it will be ignored.

If the breakpoint is disabled, the circle next to it will be gray with a red circle around it.

To demonstrate a breakpoint, the first thing we’re going to do is add a message variable and a

message on line 2.

This is what the variable list should look like:

PROGRAM PLC_PRG
VAR
message : STRING(20);

division : REAL;

Chapter 11 281

dividend : REAL := 4;

divisor : REAL := 2;

notLessThanl : BOOL;
END_VAR

For this code snippet, all we did was add a message variable. Unlike the debugMsg variable in the
print debugging example, this variable will serve as an output to show off how the breakpoint

works.

The following is the code to demonstrate the debugging tool:

message := 'before breakpoint';
division := dividend / divisor;
message := 'after breakpoint';

IF division < 1 THEN

notLessThanl := TRUE;
ELSE

notLessThanl := FALSE;
END_IF

This code is similar to the code we used for print debugging. However, to give a basic demonstra-
tion of the debugger, the message variable signals that the program is before the breakpoint, and

a change in text signals that the program has moved past it.

Once the code is modified, you will want to log in to the program, add a breakpoint on the sec-
ond line that contains the division operation, and enable it. When complete, your code should

resemble the following screenshot:

L message| ‘beforebe b | := 'before breakpoint':
:|@ division| 05 | := dividend 2 | / divisor[4 |
message] ‘beforebre b | 1= 'after breakpoint':
IF division[05 | < 1 THEN
notLlessThanl BEEE := TRUE;
ELSE
notlessThanl BENE := FALSE;
END IF

Figure 11.7: Enabled breakpoint

282 Testing and Troubleshooting

The code in Figure 11.7 shows an enabled breakpoint. Depending on the state of your code, it may
be ared line instead of a yellow one. When you press Play, you will get the following output for

the variables and code:

Expression Type Value Prepa
@ message STRING(20) ‘beforebreakpoint’
@ debugMsag STRING(20) ‘in main iff
@ division REAL 0.5
dividend REAL 2
divisor REAL -
notlLessThanl BOOL

message] ‘befombe P | 1= 'before breakpoint';

2| @ division[05 | :=dividend] 2 |/ divisor{ & |
' message] belombre b | := 'after breakpoint';

IF division[03 | < 1 THEN

ELSE

END IF
Figure 11.8: Paused program

If your output does not match up exactly, don’t worry as long as the message variable shows
before breakpoint, and the second line is highlighted yellow in the code section. Also, notice
that the division variable is set to @. In other words, the computation did not run. It is import-
ant to remember that the line with the breakpoint will not run. Ultimately, this means that the

program is paused at the second line and, as such, the breakpoint is working.

Exploring stepping
Inserting breakpoints is only half the process of using the debugger. A breakpoint will stop a
program, which means that if the error comes after the breakpoint or we need to analyze what

comes next, we need to be able to move to the next instruction. To do this, we can use what’s
called stepping.

Stepping is a tool used to manually control the flow of the program. There are a few stepping
types, as follows:

e Step Over: The Step Over command allows the statement at the breakpoint to be exe-
cuted and halts the execution again before the next command. A Step Over command

can be called by pressing F10 or the following button in CODESYS:

Chapter 11 283

Figure 11.9: Step Over button

This button will perform the same operation as pressing FI0. One point to note is that
if the next command is outside the current program organizational unit (POU)—for
example, a custom function block—that line will be executed as if it were one single

command and not go into that code.

e Step Into:Step Into should be used when the next line of code is a POU, such as a
subordinate POU, function block instance, function, method, or action. The Step Over
command will treat the POU call as one command. This means that all the code in the POU
will be executed as if it were one command. This is different from the behavior of Step
Into, which will enter the POU and execute the first statement. After the first statementis
executed, the program will then pause again. Essentially, youuse Step Intowhenyou're

calling other POUs and you need to run those commands line by line.

e

Figure 11.10: Step Into button

The Step Into command can be called by pressing the shown button in Figure 11.10 or
by pressing F8. Unless you're trying to step into a specific POU, it is not necessary to use
Step Into.

e Step Out:The Step Out command will run the POU code from the breakpoint to the
end of the POU. Once the POU code is completed, the execution will return to the calling
POU. This command is unique when compared to the other step commands because if
this command is run in the main POU, it will execute to the end and will jump back to the

first line of code in the POU. Once at the first line, it will pause there.

L

Figure 11.11: Step Out button

The Step Out command can be invoked by pressing the button or by pressing Shift + F10.

284 Testing and Troubleshooting

Other debugging commands exist in CODESYS. Each of these commands has its benefits and is
used for different things. For now, you can experiment with the breakpoint program and Step

Over command.

Since the first edition of this book came out, large language models (LLMs) have exploded in
popularity. This explosion in popularity is actually starting to change the way some developers
troubleshoot code. In the next section, we’re going to explore how ChatGPT and similar models

can be used to assist in the debugging of PLC code.

Debugging with ChatGPT

Although the title of this section is Debugging with ChatGPT, you don’t have to use ChatGPT to get
the most out of this section. There are many other excellent Al systems that can do just as good
a job as ChatGPT. Some of these other Als are systems such as Microsoft’s Copilot and Google’s
Gemini. For this book, we’re going to use ChatGPT, but you can use whatever you want. The key
is notin the Al system that you use but the prompt you write and the way you interact with the

system. Therefore, the first thing we need to do is understand how to construct a prompt!

Constructing prompts
This section is going to assume you know the basics of writing a prompt. If you’re not familiar
with prompts, you’ll want to explore Chapter 17 of the book PLCs for Beginners. However, assuming

you have some idea of how to write a prompt, there are three things you want to work in:

e Adescription of the issues that is as detailed as possible
e Things that you know are not the problem

e Source code: Note that this will not always be possible; it is a nice-to-have piece of infor-

mation but not always totally necessary

These are just some basic components. Typically, when writing the prompt, you want to have a
solid question in mind. I have found that this is the optimal way of using an LLM in general. In

fact, in my earlier writing, I used to solely refer to prompts as queries to promote the concept.

Understanding how to write a prompt is one thing. Using the prompt in practice is another. In
the next section, we’re going to apply these principles and create a prompt that can troubleshoot

a piece of code.

Chapter 11 285

Troubleshooting code with Al

To test ChatGPT or whatever Al system you’re using, let’s write a simple program that would have

a division-by-zero error in it. For example, suppose we have the following code:

division := dividend / 9;

IF division < 1 THEN

notLessThanl := TRUE;
ELSE

notLessThanl := FALSE;
END_IF

In this case, assume we’re getting a division-by-0 error. In a snippet this small, it is easy to see

why; however, for larger code blocks, a simple error such as this could be easy to make.

To troubleshoot this using an Al such as ChatGPT, we could use a prompt such as the following:

Why is this code producing a division by © answer:

division := dividend / 9;

IF division < 1 THEN
notLessThanl := TRUE;
ELSE
notLessThanl := FALSE;
END_IF

In this prompt, we have a clear question (query), a clear issue with the code, and the source code
itself. In other words, we have the backbone of a quality prompt. After entering the prompt, the

system should output something such as the following:

The issue is that the code is trying to perform division by zero in the
expression dividend / @, which is mathematically undefined. In most
programming languages, dividing by zero results in an error or produces
undefined behavior, and it may not behave as expected.

To handle this issue, you can add a check to ensure the divisor is not
zero before performing the division. Here's an updated version of the code

that prevents division by zero:
IF divisor <> @ THEN

division := dividend / divisor;
ELSE

286 Testing and Troubleshooting

division : ; // or handle the case as appropriate
END_IF

IF division < 1 THEN
notLessThanl := TRUE;
ELSE
notLessThanl := FALSE;

END_IF

In this version, we check if the divisor is zero before performing the
division. If it is zero, we assign a default value to division (e.g., 9)

to avoid the division by zero error. You can customize the handling based
on the requirements of your system.

In this case, ChatGPT reworked the code to ensure that a division-by-zero error could not occur.
It did this by wrapping the math equation in an IF statement and adding in some extra error

handling.

Note

\/V Al systems such as ChatGPT can give different answers. If the solution that you’re
given does not match the one thatis presented here, don’t worry. The system, prompt

wording, and even your prompt history can influence the results.

The future of Al troubleshooting

Though it is impossible to clearly say what the future of Al as a troubleshooting tool will be,
there are many programming systems that are being integrated with Al to allow for faster code
troubleshooting and debugging. Due to the Al systems being in their infancy, their full impact
has not been felt yet. However, these tools will be the future of debugging and software devel-

opment in general.

Al pitfalls

Itisimportant to note that many factors can affect an AI's output. Itis also important to note that
Al models are not infallible. Much like human programmers, systems such as ChatGPT, Copilot,
and Gemini make mistakes. You should never rely wholeheartedly on the output of Al to complete

a task. Though they typically produce quality results, they can, and often will, be wrong. When

Chapter 11 287

the model was trained, what dataset it uses, and even the feedback it was given can cause answers
that are outdated or flat out inaccurate. When using an Al system, it is important to err on the

side of caution. Now that we have explored Al, we can move on to our final project.

Troubleshooting: A practical example

When working with motors, it is sometimes necessary to incrementally stop a motor. Sometimes
this is due to the process, while other times it is due to the motor or component. To demonstrate

practical troubleshooting, we’re going to create a state machine.

Note

\/v This example will force variables. Forcing variables can be very dangerous in a re-
al-world project. Forcing can be a great way to troubleshoot a project, but you need

to exercise extreme caution when doing this!

The variables for the state machine will be structured like the following:

PROGRAM PLC_PRG

VAR
machineState : INT := 1;
motorSpeedCutOff : INT := 10000;
runTime : INT := 2;
setSpeed : REAL;
numOfParts : REAL := 8;
motorOff : BOOL;
exc : __ SYSTEM.ExceptionCode;
motorSlowDown : INT := 100;
speed . INT;

END_VAR

Once the variables are implemented, you can move on to the main logic of the program, which

is as follows:

CASE machineState OF
1:

motorOff := TRUE;

288 Testing and Troubleshooting
__TRY
setSpeed := numOfParts / runTime;
IF setSpeed >= motorSpeedCutOff THEN
motorOff := TRUE;
ELSIF setSpeed < motorSpeedCutOff THEN
motorOff := FALSE;
END_IF
__CATCH(exc)
machineState := 3;
__ENDTRY
runTime 1= 0;
machineState := 4;
IF setSpeed <= 500 THEN
FOR speed := 100 TO 500 BY motorSlowDown DO
setSpeed := setSpeed - speed;
END_FOR;
END_IF;
machineState := 1;
END_CASE

The purpose of this code is to gracefully stop the motor from running. However, this code block

has a particular problem. According to the customer, the motor is not slowing down.

To troubleshoot this problem, the first thing that we need to do is reproduce it. We know that the

only time the motor should be turned off is when there is an error of some kind. Therefore, we

can throw a division-by-zero error.

Chapter 11

289

The first thing we are going to want to do is run the application as normal. Therefore, we’re going

to set the machineState variable to case 2 which will put the motor in a normal state:

Expression Type Value
@ machin... INT 2
@ motors.. INT 10000
@ runTime INT 2
% setSpeed REAL q
@ numOf... REAL 8
@ motoroff BOOL
@ exc EXCEPT... RTSEXCPT_MOEXCEPTION
@ motars.. INT 100
@ speed INT i

Figure 11.12: Normal motor operations

Figure 11.12 shows that the motor appears to be on and operating as would be expected. Since

the motor will only turn off when an error is thrown, we’re going to set the runTime variable to ©.

After setting runTime to 8, we should be met with the following error:

Device Application.PLC_PRG

Expression

&

L -

machineState
motorSpeed CutQff
runTime

setSpeed
numOfParts
motoroff

BxC

motorSlowD own

speed

Type
INT

INT

INT
REAL
REAL
BOOL
EXCEPT...
INT

INT

Value I

4
10000

: C
4

8

RTSEXCPT_FPU_DIVIDEBYZERO
100

[i]

Figure 11.13: Abnormal behavior in motor

Figure 11.13 shows an error; however, our motor did not shut off. Upon examining the variable

output, we can see that everything looks as if it should work. From here, we can either start with

breakpoints or use print debugging. This is ultimately a matter of preference; however, for issues

such as these, where we’re not sure exactly why a case isn’t transitioning, print debugging can

often provide enough information for the amount of effort.

290 Testing and Troubleshooting

To carry out the print debugging process, we’re going to add a variable called msg to the variable

list. Essentially, just add the following code somewhere in the variable list:
msg: STRING(20);
At this point, we’re going to want to use our visual inspection skills, as it is important to follow

the flow of the program to get to the point where it should be executed as expected. We want to

have a msg statement at the top of the catch block, error block, and in the last case statement.

After you run the program and set the value to the variables in Figure 11.14, you should get the

same values in the Value column:

Device Application.PLC_PRG

Expression Type Value
@ machineState IMNT 4
& motorSpeedCutOff INT 10000
@ runTime INT]
@ setSpeed REAL i
@ numOfParts REAL g
@ motorOff BOOL
@ exc EXCEPTIOMCODE RTSEXCFT_FPU_DIVIDEBY ZER.O
@ motorSlowDown INT 100
@ speed INT a
@ msg STRIMG(20) 'in error case'

Figure 11.14: Program output

Here, we have something a little strange. We are held up in the error case, so we’re in case 3. How-
ever, our machineState variable is set to 4. This means that we either have our case mislabeled
or we have our state set to the wrong case. If we look at the source code for the state machine,
we can see that our motorSlowDown case is labeled as 5. This would cause an error as the case is
trying to go to case 4. Therefore, there is no case for it to go to, so it is hung up. We can fix this bug
by either changing the case number of the variable or the case itself. Since it makes little sense to
have case 3 followed by case 5, we will just relabel case 5 to case 4. Upon making the code change

and running it, we will be met with the following proper case transition output:

Chapter 11 291

Device.Application.PLC_PRG

Expressicn Type Value
@ machineState INT 1
@ motorSpeedCut0ff INT 10000
@ runTime INT i
@ setSpeed REAL -1500
@ numOfParts REAL 3
@ motorOff BOOL
@ enc EXCEFTIONCODE RTSEXCPT_FPU_DIVIDEBYZER.O
@ motorSlowDown INT 100
@ speed INT 600
#® msg STRING{20) 'in off state'

Figure 11.15: Properly transitioning the program
In the preceding screenshot, we can see that the motor is in the correct case.

Now, if we look at Figure 11.15, we can see something odd. The set speed is still way off. We have
a negative number. When the setSpeed variable hits 0, it should simply cut off, so we should

never have a value less than 0. This means we have a bug.

This bug can be found and remedied simply by looking at the code. If we have a for loop, it is
going to run for a given number of intervals. For our program, this is not as desired. As soon as
our variable is less than or equal to 0, we want the loop to break so that we can move on to the
next statement. A more appropriate loop would be a while loop. Therefore, we can modify our

program to match the following snippet.

This is the modified case 4 code:

//Motor Wind Down

msg := 'in motor case';

IF setSpeed >= 500 THEN
WHILE setSpeed >= 0 DO
setSpeed := setSpeed - speed;
END_WHILE;
IF setSpeed <= @ THEN
setSpeed := 9;
END_IF;

292 Testing and Troubleshooting

END_IF;

machineState := 1;

You can simply replace the code in case 4 with this code. The WHILE loop will execute until the
setSpeed variable—the variable that controls the motor speed—is either O or less than 0. Similar
to the FOR loop, the WHILE loop can also produce a value less than 0; as such, we’ll include an IF
statement that will set the variable to O when the value is less than or equal to 0. Essentially, this

is just a sanity check to ensure the value is set to O.

To test the code, force the machineState value to 4 so thatit will not leave the case, and you should

be met with the following output:

Device Application.PLC_PRG

Expression Type Yalue
@ machineState INT o 4
@ motorSpeedCutOff INT 10000
@ runTime INT 0
@ setSpeed REAL a
@ numOfParts REAL 8
@ motoroff BOCL
@ exc EXCEFTIOMCODE RTSEXCPT_FPU_DIVIDEBYZER.O
@ motorslowDown INT 100
@ speed INT 0
@ msg STRING(20) 'in motor case'

Figure 11.16: while loop output

As can be seen, when we force the machineState variable, the setSpeed variable will always be .
This is what we want. We have now fixed multiple bugs using forcing and print debugging, and

the state machine is now working.

Chapter challenge

To get some practice with prompts, write a few prompts for a system such as ChatGPT to trou-
bleshoot the code for you. Examine the outputs and see whether the Al system came to the same

conclusion. This may take a few iterations to fully flesh out.

Chapter 11 293

Summary

In this chapter, we explored various types of testing and troubleshooting techniques. By this point,
you should have a decent background in troubleshooting code. Both testing and debugging are

a bit of an art. It will take practice, and it will take some time to get good at it.

Overall, it should be noted that testing and troubleshooting are rapidly changing. The wide-
spread adoption of Al is changing the way code is troubleshot. If you take anything away from
this chapter, let it be the basics of how to write a prompt. As time passes, you will probably find
yourself using systems such as ChatGPT and Copilot more often. For now, we’re going to switch

gears and look at SOLID programming!

Questions

1. Define print debugging.

2. Define interactive debugging.
3. Define the debugging process.
4

How can Al be used to debug code?

Further reading

e CODESYS testing and debugging: https://content.helpme-codesys.com/en/CODESYS%20
Development%20System/_cds_struct_test_application.html

Get This Book’s PDF Version and
Exclusive Extras
]

Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

https://content.helpme-codesys.com/en/CODESYS%20Development%20System/_cds_struct_test_application.html
https://content.helpme-codesys.com/en/CODESYS%20Development%20System/_cds_struct_test_application.html
http://packtpub.com/unlock

12

Advanced Coding: Using SOLID
to Make Solid Code

As the old saying goes, “with great power comes great responsibility,” and in terms of OOP, this could
not be truer. Object-oriented programming is an excellent methodology to program literally
anything. However, it can easily end up a huge mess. In my formative years as a developer, I often
put little to no forethought into how my code would work and be used; I just coded. This flaw in
thinking led to a few programs being sent to the cyber-trash heap way before their time. When

implemented incorrectly, OOP can produce a chaotic mess of a program.

Until this point, we have explored the power of OOP and how it can allow us to reduce the amount
of code that we have to write. However, what we have not explored is how to keep codebases
maintainable. By default, OOP does not necessarily translate into code that is easy to maintain,
expand upon, or, for that matter, understand. Even when using proper relationships between
function blocks, proper design patterns, and the like, code can still easily become a mess. This
mess can be a major issue for industrial automation, where systems are constantly adapted to an
ever-changing world. So, if OOP is the way of the future for industrial automation programming,

how can we ensure that our OOP code will last?

Enter the world of SOLID programming. SOLID programming is a set of rules that will help you
drastically improve your code. In this chapter, we are going to learn about SOLID programming
by exploring the following concepts:

e Asoftintroduction to SOLID

e How SOLID benefits code

e The principles of SOLID

296 Advanced Coding: Using SOLID to Make Solid Code

Lastly, we are going to use SOLID principles to design a simulated industrial painter.

Technical requirements

For this chapter, all you will need is a copy of CODESYS installed. The examples for this chapter
can be found at the following URL: https://github.com/PacktPublishing/Mastering-PLC-
Programming-Second-Edition/tree/main/Chapter%2012.

Some of the code for this chapter will be a bit different than the other chapters. Much of the
code in this chapter will be more akin to pseudocode that follows the IEC 61131-3 Structured Text
syntax/structure due to the examples being used to merely demonstrate concepts. The goal of
the examples is to provide a very familiar code structure so the principles can be applied to other
languages and non-PLC projects that will be common in Industry 4.0. It cannot be stressed enough
that these principles are language- and platform-agnostic. With that, the general structure and
flow of the pseudocode are mostly compatible with CODESYS, and with minor modifications, can

be run as examples. Nonetheless, the code is not designed to run as-is unless stipulated.

Introducing SOLID programming

If you’re a traditional developer, you may have heard of SOLID programming before. SOLID is a
very common set of principles that are used across the IT industry to produce well-architected
code. If you're an automation programmer, you probably haven’t heard of the concept before, and

that’s due to the immature implementation of OOP in PLC programming.

When I'was first introduced to SOLID programming, I was incredibly confused about its purpose.
My young, inexperienced self simply could not fathom that OOP did not ensure quality code. Af-
ter all, as long as you're following proper OOP principles, you should be producing quality code,

correct? Well, the answer to thatis “Wrong.” Quality code stems from well-architected code.

A quality program is a program where things can be easily added or removed, bugs can be easily
found, and code can be easily changed without the risk of breaking other code. This is where
SOLID comes into play. SOLID programming is a set of general rules that, when followed, will

drastically improve the quality of your program’s architecture.

So, what is SOLID programming? SOLID programming is a set of five object-oriented design
(OOD) principles. SOLID programming is the brainchild of Robert C. Martin, a.k.a Uncle Bob. What
Uncle Bob devised are five principles that, when implemented properly, can allow your program
to become flexible enough to be maintained so it can stand the test of time. With the introduction
of OOP into the industrial automation world, having flexible code is a necessity. Before we start

diving into SOLID programming, we need to first understand its benefits.

https://github.com/PacktPublishing/Mastering-PLC-Programming-Second-Edition/tree/main/Chapter%2012
https://github.com/PacktPublishing/Mastering-PLC-Programming-Second-Edition/tree/main/Chapter%2012

Chapter 12 297

Benefits of SOLID programming

As every automation engineer knows, automation systems can stay in production for decades on
end. As every automation engineer also knows, during that time, the process will change, which
will require new software, hardware will become obsolete and will need to be replaced, and so
on, which, as you can guess, will require software modifications. As someone who has spent
countless hours sifting through thousands of lines of code at a customer site for hours on end
with multiple different employers, I can say that when it comes to architecture, the extra effortis
worth it. Even when you’re working on well-organized and well-architected codebases, you’ll find
that tracking down a single error can be quite daunting. When the codebase is poorly designed,

tracking bugs can become a Herculean task.
When implemented properly, SOLID can produce code with the following qualities:

e Easier to debug

e Cheaper to maintain

e Easier to scale (add or remove features)
e Performs better

e Runsmore efficiently

In general, SOLID will greatly improve the quality of your codebase and make it much more

scalable and easier to fix in the field.

Itis best to think of SOLID as a series of general rules as opposed to hard standards. These general
rules will produce code thatis easy to maintain, expand, and, if necessary, modify. In other words,
most think of SOLID as a set of best practices. When implemented correctly, these principles will

allow you to build very robust code that is easy to maintain in the future.

Since SOLID is more of a set of best practices, it’s important to understand that the context in
which it is thought of and how it is implemented will vary, like OOP. However, much like how
the general rules don’t change from language to language, neither will the rules of SOLID. With
that in mind, let’s explore the principles that govern SOLID programming.

298 Advanced Coding: Using SOLID to Make Solid Code

The governing principles of SOLID programming

The principles that govern SOLID programming are as follows:

1. S:Single-responsibility principle
2. O:Open-closed principle

3. L:Liskov substitution principle
4. I:Interface segregation principle
5

D: Dependency inversion principle

Note

V4 These principles are widely used in general-purpose programming. This means that
\G/‘ if you’re using a general-purpose programming language such as C# or Java to create

your HMISs or other automation software, you can use these principles to keep that

codebase clean as well!

As a PLC developer, you will use some of these principles more than others. For me personally,
the principle that I use the most is the single-responsibility principle (SRP). This principle can
be applied to almost any code module, such as a function, interface, struct, function block, or

anything else.

The single-responsibility principle

The SRPis, in my opinion, the mostimportant of the five principles to implement. The SRP states
that a code module should do one thing and one thing alone. This goes back to the one-sentence
rule. If you have to use the word and to describe your module, you have violated the SRP, and you
should break the component out. Generally, this is a trick that many experienced developers use

to ensure that code components are properly broken out.

Now, what qualifies as a code module? Well, that is kind of an open-ended question. However,
as an everyday developer, the code modules that you will interact with the most will generally

consist of the following:

e Functions/methods
e Function blocks or classes (in a general-purpose programming language)

° Structs

Chapter 12 299

e Interfaces

e Microservices

Any time I'm developing something that uses a code module like the ones just mentioned, I
recommend trying to summarize its responsibility in a complete sentence without the word and.
If the word and appears in the sentence, it usually means the module is doing more than one
thing. This is especially true for methods/functions. Even in the realm of traditional software
development, it is not uncommon to see functions/methods that do multiple things. This will
usually lead to serious trouble when one of the module’s responsibilities must be changed. The
moment you change a line of code in a module, that module should be treated as new, untested,
and potentially defective. If the SRP is ignored, you’ve effectively broken multiple components of

the program by altering that single method, function, or whatever else it might be.

The key to using the SRP properly is the sentence that describes the code modules. This can be
very tricky when you first start using the technique. For many who are first starting out, there is
a big gray area as to how to format the sentence. For example, if you have a machine with two
different motor brands, a lot of developers will simply group the logic for both motors together.
In some cases, this could work; other times, it won’t. When you’'re trying to use the one-sentence
rule, you need to be fair with your sentence, and you need to have a clear understanding of what
you’re trying to do. If you have two or more functionalities that could be broken if there were a

change to one, then you should break that module out.

Implementing the SRP

For some reason, developers (both experienced and non-experienced) love to bunch several dif-
ferent responsibilities in methods or functions. When things inevitably have to be changed, you’ll
end up having to retest several different behaviors. To demonstrate this with code, consider the

following function with the following variables:

FUNCTION motors : BOOL

VAR_INPUT
pos : INT;
motorPos : INT;
END_VAR
VAR

turnOnMotor : BOOL;
END_VAR

300 Advanced Coding: Using SOLID to Make Solid Code

The body of the function is composed of the following:

IF turnOnMotor = FALSE THEN
turnOnMotor := TRUE;
END_IF

IF motorPos <> © THEN
motorPos := 0;
END_IF

MotorPos := pos;

Note

\/&/ The code in this example is designed to reflect a function that does not follow the
SRP. The operations of the function are simple examples to demonstrate ignoring

the concept.

In this case, we have a function called motors. Already, we have a clue that this function is doing
too much due to the plural name. After exploring the body of the function, we can see that this
component is responsible for turning the motor on if it’s off and homing the motor if it’s not

homed and, finally, setting the position of the new motor.

Now, suppose that our boss wants to modify this so that the function toggles the motor state as
opposed to just enabling the motor. This request means there’s a possibility for new bugs to be
introduced, and on top of all that, we can’t reuse any of this code. As such, in the best of cases,
we will get unneeded and redundant code that may or may not have defects in it. In this case, the
modifications to the code will require extensive rework and testing of non-relevant features. In
other words, instead of only testing the new feature (in this case, the toggle function), we have

to test all three responsibilities.

Note

\E/ Though redundant code in automation engineering isn’t necessarily seen as bad by

many practitioners, it actually is and should be avoided.

Chapter 12 301

If we were to summarize this function in a sentence, we would get something like the following:
This function turns on the motor and homes the motor and positions the motor.

As can be read in the sentence, the word and appears twice. This means the function is perform-
ing at least three responsibilities. In these situations, it is usually a good idea to break out each
responsibility that comes after the word and into a function of its own, and call those functions
from another. In other words, we need to create a fagade or orchestrator function. A better solution

to this problem would be to create three functions, such as the following:

homeMotors (FLIM)
matarCn (FLM)
mators (FUN)

Figure 12.1: Functions

Note

The motors function name does not follow the verb rule and is plural. The name

motors was kept as a means to help keep track of the original function from the last

V4 example. It is also not uncommon for a function such as this to be named a plural
\E/ noun in the automation industry because it is a fagade function that can be used to
control multiple motors. When implemented correctly, having a facade method or

function responsible for controlling multiple like-items, such as different motors,

will not violate the SRP; however, in most real-world situations, it would normally

be preferred to change the motors name to a singular verb.

The homeMotor function will consist of the following code:

FUNCTION homeMotor : BOOL
VAR_INPUT
END_VAR
VAR

motorPos . INT;
END_VAR

The body will consist of the following:
IF motorPos <> © THEN

MotorPos := 0;
END_IF

302 Advanced Coding: Using SOLID to Make Solid Code

Next, the motoron function will consist of the following:

FUNCTION motorOn : BOOL
VAR_INPUT
END_VAR
VAR

turnOnMotor : BOOL;
END_VAR

The body of the function will be as follows:
IF turnOnMotor = FALSE THEN

turnOnMotor := TRUE;
END_IF

Finally, what consists of the motors function will now be reduced to the following:

FUNCTION motors : BOOL

VAR_INPUT

pos ¢ INT;
END_VAR
VAR

motorPos : INT;
END_VAR

The body of the function will now consist of the following:

motoron();

homeMotor();

MotorPos := pos;

Though thisislittle more than a fancy pseudocode example, we demonstrated how we can archi-
tect the SRP into our system. In this case, all we did was break the logic into separate functions
and call those individually with a facade. By doing this, we can now modify the functions without
directly affecting other functionality. We can also call the new functions individually, which means
no redundant code. This design will also make our code more robust because we now have more

granular control over its behavior.

Chapter 12 303

Note

\E/ Though you are not directly changing or atrisk of breaking outside code when using
the SRP, it is still generally a good idea to test the dependent functionality.

Now that we have a basic understanding of the SRP, we need to move on to the next principle of
SOLID, the open-closed principle (OCP).

The open-closed principle

The general rule of thumb in an ideal world is that once a stable code module is implemented,
you don’t want to modify it to add functionality. This kind of leaves us in a pickle, as, at some
point, we are going to need to add new features; in short, we are going to have to eventually scale

the program.

If you perform a Google search on the open-closed principle, you will usually find a definition

that states the following:
Objects or entities should be open to extension but closed to modifications.

This essentially means that instead of modifying a class/function block to add new functionality,
itis better to extend it using principles such as inheritance, polymorphism, or advanced design
patterns. This means that the OCP is ultimately a design principle. The OCP is something that
needs to be baked into the design phase, and it will usually take practice to properly implement

and plan for.

This principle also goes hand-in-hand with the SRP, in my opinion, as you will need to ensure
your modules are only doing one thing to properly pull off the OCP. To properly implement this
principle, you must have a clear understanding of the relationships between the objects, and each
object should closely follow the SRP. Put bluntly, properly implementing the principle starts in
the design phase of the SDLC.

Implementing the OCP

Implementing the OCP takes practice to master, and like many other things in programming, it
is often subjective as to what constitutes a properly open-closed architecture. However, consider

that we have a function block that drives a motor, as in the following example.

304 Advanced Coding: Using SOLID to Make Solid Code

In this pseudocode example, we are going to examine a function block that consists of two methods.
The function block will be called MotorControl, and it will have a motoroff and a motorON method.

Both methods will use a series of function block-level variables that will look like the following:

FUNCTION_BLOCK MotorControl
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
motor : INT;
wait : WSTRING;
state : BOOL;
END_VAR

The motorON method will look like the following:

CASE motor OF

1:
wait := "10 ms";
state := TRUE;
28
wait := "2 ms";
state := TRUE;
END_CASE;

The motor0off method will consist of the following:

CASE motor OF
1:

wait := "10 ms";

state := FALSE;

wait := "2 ms";
state := FALSE;
END_CASE;

Chapter 12 305

If you look at the code, you will see that both motor functions have a case for different types of
motors. The code shows that each type of motor will have a unique pause before the motor is
either turned on or shut down. In other words, this code will work for these two specific motors.
However, suppose we want to add a third motor with a waiting period of 5 milliseconds. To im-
plement this, we would have to modify two different methods. This means we will need to break
our golden rule and change the existing code. A change like this would include an extra case with
a state change and a wait time. A change like this isn’t that big of a deal in theory. However, a
simple change like this can lead to broken code for motors that are not relevant to the upgrade,
and enough of these small changes can add up over time to morph the codebase into something
unmaintainable, unstable, and messy. At the very least, to be thorough, you will have to retest each
of the motors. As we established before, in the productivity and profit-driven world of industrial

automation, this can lead to extra downtime, which, in turn, will lead to an extra loss of money.

To summarize the code thus far, we created a program that does not follow the OCP; in other words,
we created code thatis not scalable. Our program cannot be modified without manipulating old
code, which can lead to maintainability issues later on in the product’s lifespan. Put bluntly, our
program is not architected well, and sooner or later, we will end up with issues. In all, if this code

is deployed to a customer site, it will eventually end up costing the owner downtime and money.

With that in mind, how can we alter the code to keep it well-architected and create a more flex-
ible and SOLID architecture? The answer to that will reside in the motorControl function block.
Conceptually, the motorControl block does follow the SRP because if we were to describe it with

a sentence, it would read like the following:
The function block controls the state of the motors.

In this case, it can be argued that the motors being plural could mean that it is not fully in com-
pliance with the SRP even though itis. This type of semantics is where the one-sentence rule can
get gray. As we design the software, this is one area that needs special attention, as we are kind

of in compliance with the SRP, but we’re still experiencing issues with flexible code.

306 Advanced Coding: Using SOLID to Make Solid Code

To fix these scalability issues, let’s redesign the program using UML.

= motorControl
+ToggleMotor(BOOL)
Extends Extends
= Brand1 = Brand2
+ motorState - BOOL + motorState : BOOL
+ state() + state()

Figure 12.2: Open-closed motorControl function block

With this design, the motor brand function blocks will inherit from the motorControl function
block. In this design, the only thing the Brand function blocks will keep track of is the state of
the motor. The way this program is designed, if a new brand had to be added, all we would have
to do is create a new function block that extends motorControl. This is in contrast to the old

design, where, if we wanted to add a new motor, we would have to modify at least two different
blocks of code.

If we were to turn the UML design into code, it would have the following project tree:

Brand1 (FB)

G state

Brand2 (FB)

jﬁ state
MotorControl2 (FB)

=4

|fpg toggleMotor

it |

Figure 12.3: Open-closed project tree

Chapter 12 307

The pseudocode for the toggleMotor method in the MotorControl2 function block should match
the following:

METHOD PUBLIC toggleMotor : BOOL
VAR_INPUT

state : BOOL;
END_VAR

The body of the method should look like this:

IF state = TRUE THEN
toggleMotor := FALSE;
E[SSE
toggleMotor :
END_IF

TRUE;

The variable logic for the Brand1 and Brand2 function blocks will be simple, like the following:

FUNCTION_BLOCK Brand2 EXTENDS MotorControl2
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
motorState : BOOL;
END_VAR

The logic for the Brand1 method will resemble the following:

motorState := toggleMotor(TRUE);

By the same extension, the Brand2 method will resemble this:

motorState := toggleMotor(FALSE);

As can be seen in the two methods for this example, both methods are very similar and only pass

an argument to the toggleMotor method.

308 Advanced Coding: Using SOLID to Make Solid Code

This design is much more flexible and scalable. With this design, scaling the functionality of
the program is as simple as adding a new function block. This is a major improvement over the
original design, which required many different changes to existing code to simply add support

for another motor.

With all that being said, it is unrealistic to think that you are never going to modify the old
code. Old code will eventually have to be changed — there is simply no way around that. You will
eventually have to update a function block or method to add a new base feature, such as a speed
control method or whatever else. There is no way of knowing the future and, by extension, there
is no way of working everything into a design. Now, what the OCP is getting at is that you don’t
want to have to modify existing code to add support for new things, such as extra motors or the
like. Generally, if it is a functionality that is reflected across all child function blocks or targets a
specific function block, it is, in my opinion, okay to modify. However, if you are constantly having
to modify code to add support for new components, you probably need to revisit your design
with the OCP in mind.

In summary, the OCP is a design principle. This is not something that you can bake into your code
on the fly, as it will need to be addressed during the design phase. Mastering this rule will take
practice to implement properly, and people may disagree with the overall best course of action.
However, with practice, you will learn how to implement this rule, which, in turn, will increase
the quality of your code. With all that being said, we can now move on to the L in SOLID, which
stands for the Liskov substitution principle (LSP).

Liskov substitution principle

The LSP is, without a doubt, one of the hardest SOLID concepts to understand and implement.

The concept is usually defined with something akin to the following:

Objects of a parent class/function block should be replaceable with objects of a child class/function block
without affecting the behavior.

In short, thisidea means that the child function blocks should not restrict or change the behavior

of the parent function blocks. This is a simple idea, butit can be hard to understand or implement.

What the LSP boils down to is that you should be able to swap a parent reference for a child ref-
erence, and all code that relies on the parent’s contract should still behave correctly. To properly
implement this principle, you must have developers who are knowledgeable on the topic. This

isn’ta principle that can normally be enforced by outside software; instead, you usually must find

Chapter 12 309

violations by testing and, in the case of automation programming, code reviews. It is my experi-
ence that when an organization tries to implement SOLID, this principle can be either overlooked

or warped, since enforcing it is usually a matter of style and ensuring behavioral correctness.

Implementing the LSP

To demonstrate the concept, we’re going to explore a violation of the LSP first. It is common to
use a square and a rectangle as an example. This is a common example, and it is a good example
to research to grasp the LSP. In practice, both a square and a rectangle have an area equal to the

following equation:
Area = length * width

In mathematics, a square can be defined as a type of rectangle; therefore, we have an “is-a” rela-
tionship. Essentially, a square will use the same area equation and can inherit from the rectangle

function block. We can code this out with the following code:

The rectangle function block

The variables for the main function block will be as follows:

FUNCTION_BLOCK rectangle
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
width : INT;
height : INT;
END_VAR

This function block will have three methods named setWidth, setHeight, and getArea. All the

methods will have a return type of INT and an access specifier of PUBLIC where applicable.
e The getArea method will have no variables but will have the following logic:
getArea := width * height;
e The setWidth method will have one variable,w : INT, that will be embedded in the
VAR_INPUT block. The logic for the file will be as follows:

width := w;

310 Advanced Coding: Using SOLID to Make Solid Code

e Finally, setHeight will also have one variable,h : INT,embeddedin the VAR_INPUT block.
The logic for the method will be as follows:

height := h;

Essentially, the function block will be responsible for setting the dimensions of the shape and

retrieving the area.

The square function block
The square function block will inherit from the rectangle block, but will have no logic or variables;

itwill only have two methods named setHeight and setWidth that will have areturn type of INT.

e The setHeight method for the square function block will have one variable, h : INT,in
the VAR_INPUT block. The logic for this block will match the following:

Width h;
Height := h;

e The setWidth method will have one variable,w : INT,in the VAR_INPUT block, and the
logic will be as follows:

width := w;

height :

W3

Once the two function blocks are implemented, the PLC_PRG variables should be as follows:

PROGRAM PLC_PRG

VAR
rRect : rectangle;
rSquare . square;
errorRect : BOOL;
errorSquare : BOOL;
areaRect . INT;
areaSquare : INT;

END_VAR

While the logic for the POU will be as follows:

(* Test with Rectangle *)
rRect.setWidth(w := 5);
rRect.setHeight(h := 4);

Chapter 12

311

areaRect := rRect.getArea();

IF areaRect <> 20 THEN
errorRect := TRUE;
END_TIF;

(* Test with Square, used "like" a Rectangle *)

rSquare.setWidth(w := 5);
rSquare.setHeight(h := 4);

areaSquare := rSquare.getArea();

IF areaSquare <> 20 THEN
errorSquare := TRUE;
END_IF;

When the code is run, you should be met with Figure 12.4:

Device Application.PLC_PRG

Expressicn
rRect

rsquare

¥
¥
errarRect

errorsguare

areaRect

& % R e B

areaSguare

Type Value

rectangle

square

BOOL
BOOL TRUE
IMT 20

INT 16

Figure 12.4 - Non-compliant LSP output

You should be able to swap a parent reference for a child reference, and all code that relies on

the parent’s contract should still behave correctly. In this example, even though a square is a

rectangle, they are not compatible enough for inheritance to be properly applied and for every-

thing to still make sense. In other words, a square is a rectangle, but a square is not enough of a

rectangle for the square to inherit from. In this case, the implied contract is that setWidth and

setHeight set their respective dimensions independently. The PLC_PRG POU can reasonably ex-

pectSetWidth(5); and SetHeight(4); toyield an area of 20. In square, those same calls produce

an area of 16 instead, so substituting a square where a rectangle is expected breaks the caller’s

assumptions and violates the LSP.

312 Advanced Coding: Using SOLID to Make Solid Code

If this was a violation of the LSP, what does a compliant example look like? In this demo, we’re
going to rework the example to create a compliant LSP program. First, we need a more generic
structure for both function blocks to inherit from. If we think about it, a square is a rectangle,
but they are both shapes. This means we can rework our example, to have a structure similar to

the following.

Shape

’*ImplemenlsJ leplemenls—

Square Rectangle

Figure 12.5 - Compliant LSP structure

In this program structure, we are going to have both function blocks derive from something more

generic, a general shape.

In this example, we’re going to implement a shape interface called IShape with a method called

GetArea with the following code.

METHOD getShape : INT
VAR_INPUT

METHOD GetArea : REAL
END_VAR

We’re going to rework our rectangle function block to implement IShape and have a method

called setSize with the following variables.

METHOD PUBLIC setSize : INT

VAR_INPUT
w : INT;
h : INT;

END_VAR

Chapter 12 313

The method block will have the following logic.

width := w;
height := h;

This function block will also automatically implement the GetArea method, which will consist

of the following:

GetArea := width * height;

The rectangle function block itself will have the following variables.

FUNCTION_BLOCK rectangle IMPLEMENTS IShape
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
width : REAL;
height : REAL;
END_VAR

The square will also implement IShape and have one unique method called setSide that will
have the following variables.

METHOD PUBLIC setSide : INT
VAR_INPUT

si : INT;
END_VAR

The line for the logic will be as follows:

side := si;

The GetArea method will also have one line of logic, which will be as follows:

GetArea := side * side;

The PLC_PRG POU will consist of the following:

PROGRAM PLC_PRG
VAR
rect : rectangle;

sq ! square;

314 Advanced Coding: Using SOLID to Make Solid Code
shape : IShape;
areaRect : REAL;
areasq ¢ REAL;
END_VAR

The main logic for the POU will be as follows:

rect.SetSize(w := 5, h := 4);
shape := rect;
areaRect := shape.GetArea();

sq.SetSide(si := 5);
shape := sq;
areaSq := shape.GetArea();

We created a reference to IShape, and we call GetArea using that reference. The magic with this

example is that all we’re doing is changing what object the IShape reference is pointing at.

When this code is run, we should get what’s shown in Figure 12.6:

Device Application.PLC_PRG

Expression

+ o rect

+ @ sq

+ @ shape
@ areaRect
@ areasg

Type Walue
rectangle

square

IShape 16#000...
REAL 20

REAL 25

Figure 12.6 - Compliant example

In this example, IShape is the parent and the two function blocks are the children. In this case,

all code that relies only on the IShape contract keeps working. In other words, if you see shape,

you should be able to use rect or sgq.

If you contrast this with the previous, non-compliant example, you may notice that the overall

code structure is slimmer and more maintainable. Barring the IF statements that were used as

error checks, this version of the code has, overall, fewer and more streamlined methods. Though

the methods for the non-compliant example were short, you have to consider what that would

Chapter 12 315

be like if this were a production environment. You would have more methods, which would

probably be more complex.

The LSP is, in my opinion, the most confusing of the SOLID principles. What constitutes compli-
ant LSP code is often up for debate in practice. However, a simpler principle that we’re going to

explore in the next section is the interface segregation principle (ISP).

Interface segregation principle

As we have explored, anytime we implement an interface, we have to implement all the methods
that come with it. This can be good and bad in a way. In a sense, when we implement an interface,
we never have to worry about accidentally missing a method implementation. On the other hand,
if we are not careful and our interfaces are not designed well, we can end up with methods that
arenotused in the function block, which is a bad practice. In programming, we don’t want unused
code in our programs, as it can clutter and bloat the codebase. Conversely, if you do remove an

interface’s method in a function block, the code typically won’t compile.

This is where the ISP comes into play. Essentially, the meaning of the principle can be summed

up with the following:

A function block should not have to implement an interface it does not use, nor should it depend on

methods that it does not use.

The best way to think of this principle is to use it or lose it! It is a very sloppy but very common
practice to leave unimplemented code in your program due to interfaces. If you implement a
general interface, you will likely end up with methods that your project does not need. As aresult,
you will have useless methods floating around your codebase. Even though a system such as
CODESYS willimplement the methods automatically, from a purely organizational point of view,
your codebase will become more cluttered and one of those useless interfaces will eventually get
deleted and cause havoc with compilation. Though it is common to use fat, general interfaces, it
should be avoided whenever possible. If you see your function block is dependent on methods

thatit does not use, it is a signal that it’s time to redesign your interfaces.

The ISP recommends thatitis better to use multiple smaller and more specific interfaces than one
fat, general one. Itisimportant to remember thatinterfaces are models. If your function blockis a
hybrid of multiple things, you can use multiple models to craftit. For example, consider a checking
and savings account. Both accounts will allow you to withdraw and deposit money; however, a
savings account will build up interest over time. Though this type of program would not normally

be utilized in a PLC, for the sake of example, let’s look at some code to explore this concept.

316 Advanced Coding: Using SOLID to Make Solid Code

Implementing the ISP

Aninexperienced programmer may do something such as the following to implement accounts:

= =0 accounts
_||—;'| deposit
M interest

€M withdrawal

Figure 12.7: Accounts interface

In this case, we have three methods: deposit, interest, and withdrawal. When we implement

this interface, we get the following:

Figure 12.8: Checking account function block

The interest method was automatically added when we implemented the accounts interface.
This means that we have unused code and, as we stated before, this is not good. We violated the
interface segregation principle and, as such, we are now dependent on unused code. So, with

that in mind, how can we fix this?

The cleanest way would be to create a savings accounts interface that extends a checkingAccount
one. To do this, we are going to create a savings and checking account function block, as well as

a savings and checking account interface, similar to the following:

= I interface_seg_complient
= =0 IcheckingAccount
,_;i deposit
,,,ﬁ withdrawal
= =0 IsavingAccount

“pa interest

Figure 12.9: Interface segregation compliant

Chapter 12 317

In this example, the savingsAccount function block implements the IsavingAccount interface.
The IsavingAccount interface itself extends the IcheckingAccount interface, and, as such, the
savingsAccount function block that implements IsavingAccount will consist of the deposit,
withdrawal, and interest methods. With this implementation, the savingsAccount function
block will have all three necessary methods. You can think of IsavingAccount as a composite in-
terface. Though, in this case, we only implemented one interface in the savingsAcccount function

block, we actually implemented multiple smaller ones through interface inheritance.

On the other hand, the checkingAccount function block will only implement the IcheckingAccount
interface. This means that it will not require the interest method, which, in turn, means that
the function block will not have unnecessary code. As a result, the program is now in compliance

with the ISP. Now that we have the ISP under our belt, we can look at the final principle, the de-

pendency inversion principle (DIP).

Dependency inversion principle

When developing modern-day software, you want your code to be as loosely coupled as possible.
It is common, especially in automation, to have to work with various types of libraries and APIs.
The kicker to this is that this software will change especially when parts are swapped out. For
example, it is not uncommon for the customer to opt to put a different brand of hardware in the
machine. This means that if you have something such as a motor drive that requires a certain
library, your software will need to be changed to accommodate the modification. As has been the
whole point of this chapter, you don’t want to change existing software and, if you do, change it

as minimally as possible. Academically, the DIP can be defined as:

High-level modules should not depend directly on low-level modules; both should

depend on abstractions.

This is where loosely coupled architecture comes into play. When it comes to consuming low-level
software components such as application programming interfaces (APIs) or the like, you don’t
want your software closely tied to it. To use something such as a drive library, you want to create
amiddleman component to act as a go-between. In other words, you don’t want to talk directly

to the API; you want to talk to a function block that will talk to the API for you.

318 Advanced Coding: Using SOLID to Make Solid Code

The middleman API is like a facade function block. The middleman will always have a set of
stable methods that can be used. For example, you could have an on, off, and ready method that
your high-level code will call. The middleman function block will be responsible for determining
which API method(s) to call to accomplish the task. In terms of a block diagram, the DIP can be

viewed as the following:

API

! APl
|
Program Call ——» Wrapper

API

AT

API

Figure 12.10: Dependency inversion diagram

This design will, for the most part, allow you to keep your program intact. This means that if the
lower-level modules ever change, your program won’t have to. All you’ll need to do is modify

the wrapper to support the API changes. We can demonstrate this with the following example.

Implementing the DIP

Suppose we have two APIs, called Api1FB and Api2FB, that provide the logic for turning a device
on. To promote a loose design, we are going to create a DriveFB function block that will act as a
middleman or fagade for the CartFB function block, which will be the high-level code that the
user is manipulating with calls from a control panel. In other words, for this example, CartFB
will be the Program Call represented in Figure 12.10. The DriveFB will serve as a wrapper that

will prevent the higher-level CartFB block from having to know about the APIs.

Chapter 12 319

Note

The focus of this project is to show separation of high-level and low-level logic. The

V4 DriveFB function block is designed to act as an example of a wrapper. Though this
\E/ is a common real-world example of how DIP is often implemented in practice, in
the strictest sense of the principle the function block should be abstracted out more,

using structures such as interfaces. Nonetheless, the example will be similar to how

DIP-style wrappers are often implemented in the field.

For this example, we are going to create a GVL file and the following function blocks:

. CartFB
. DriveFB
e ApilFB

e Api2FB

All function blocks with the exception of CartFB will have a PUBLIC method named on that has
areturn type of BOOL.

When we are done, the structure of the project should look like the following:

=-IC} Application
@ o
m Library Manager
=-|E] apitFe (FE)
E\?‘I on
=-[E] ApizFe (FE)
ﬁ;“ on
CartFB (FE)
- DriveFB (FE)
ﬁ;“ on
PLC_FRG (PRG)
= @ Task Configuration
= @ MainTask (IEC-Tasks)
) pLc_PRG

Figure 12.11: Dependency inversion project

Once you have this in place, you can start to set up the code.

320 Advanced Coding: Using SOLID to Make Solid Code

First, the GVL will only consist of a single variable. The code for this structure will be as follows:

{attribute 'qualified_only'}
VAR_GLOBAL

msg : WSTRING;
END_VAR

The ApilFB function block will only have a single line of code in the on method, which will be

the following:

GVL.msg := "apil";

The same can be said for the on method for the Api2FB function block, which will consist of the

following:

GVL.msg := "api2";

The DriveFB method will consist of the following:

FUNCTION BLOCK DriveFB
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
al : ApilFB;
a2 : Api2FB;
END_VAR

The on method for the DriveFB block will consist of the following variables:

METHOD on : BOOL
VAR_INPUT

api : INT;
END_VAR

While the body of the DriveFB on method will consist of the following:

IF api = 1 THEN
al.on();
ELSE
a2.on();
END_IF

Chapter 12 321

The next function block to set up is the CartFB block, which will comprise the following:

FUNCTION_BLOCK CartFB
VAR_INPUT
in : INT;
END_VAR
VAR_OUTPUT
END_VAR
VAR
d : DriveFB;
END_VAR

The body of the CartFB function block will comprise the following:
d.on(in);

To call the DriveFB function block and utilize our mock APIs, we will use the following variable
in the PLC_PRG file.

PROGRAM PLC_PRG
VAR

c : CartFB;
END_VAR

Api2FB will ultimately be invoked with the following line:
c(in:=2);
When the program is run, you should see the following output in GVL:
Expression Type Value
@ msag WSTRING "api2"
Figure 12.12: GVL output for the program

If youreplace 2 in the final line of the PLC_PRG file with 1, you should see the other API be invoked.

In this project, we created aloosely coupled program that requires minimal to no programmatic
modifications to the high-level logic (CartFB) if either of the APIs is ever changed. Now, this code
was merely for demonstration. The IF statements are not the most effective or robust way of
implementing this program. It was done as a means to easily demonstrate the concept of using
awrapper. Overall, this is a very simplified version of DIP. A much better solution would include
creating a factory function in the DriveFB function block, using more abstraction for the wrapper,

and passing around a reference to the objects; these suggestions would promote a better and more

322 Advanced Coding: Using SOLID to Make Solid Code

SOLID solution for the architecture. Regardless of how you do it, the goal of DIP is to promote
loosely coupled software. By doing this, you will need fewer code changes to adapt and have an

overall more flexible and stable design.

By this point, we have explored all of the SOLID principles. SOLID is not an approach that can
be easily mastered. SOLID is more of a mindset that must be practiced to fully understand. Now

that we have a basic understanding of SOLID, let’s try to design a simulated painting machine.

Final project: design a painting machine
Painting machines are often complex devices that have many moving parts. For our final project,
we are going to design a simulated device that can move a part on a conveyor belt and paint a
sentence on it. For this project, we are going to set the following requirements:

e Drive the conveyor belt (belt on/off)

e Select between two paint APIs

e Paintamessage ona part

With these requirements, we can formulate a design like the following:

IMotor =
1GetColor = |GetMessage
+motorCn()
+getColor() +getMessage()
+motorQfi() \ /
Extends
Extends
FaintAPI1
PaintMotors = PaintWrapper
e _ Uses
| - BeltMotor +paint(} +getColor()
i———————————————————— Use: »
| +standBy() +getMessage() getMessage() Uses
+getColor
FPaintAPI2

Uses
Uses’

PLC_PRG

e — |

Figure 12.15: Painter design

Chapter 12 323

In this case, the PLC_PRG file is going to act as our orchestrator. The file will control when the
belt is running and when the machine is painting. In this design, we’ll use a beltMotor func-
tion block and a paintMotors block, which will implement IMotor. The paintMotors block will
use the paintWrapper function block as a wrapper; in this case, this will be our mock APIL. The
paintWrapper function block will use two different vendor paint APIs, and it will also implement

two interfaces, called IGetColor and IGetMessage.

In short, this example is SOLID. All our components, such as our methods, interfaces, and function
blocks are describable with one sentence. This means we are following the SRP. Our components
are defined singularly enough that if we needed granular control over them, such as calling a

singular method or creating a coherent fagade, we could.

In this design, if more motors need to be added (added features), we can add them without need-
ing to change existing code in beltMotor or paintMotors. Therefore, as the machine is upgraded
and new functionality is added, we never have to worry about inadvertently breaking beltMotor

and paintMotors. This means that our motor design follows the OCP.

We also have the basis for the LSP. Since we have the IMotor interface, any place in the code that
works with an IMotor instance can use either a beltMotor or paintMotors instance instead. The
key is that, as long as beltMotor and paintMotors satisfy the contract defined by IMotor, the
LSP is satisfied.

The paintWrapper function block will enforce the interface segregation principle, as the two
interfaces only provide the relevant methods for the function block to use. If, at some point, we
decided that we no longer need a getColor method, we could remove this interface and the

method with no leftover code.

The paintWrapper function block also serves as a fagade wrapper that provides a buffer between
the APIs and the paintMotors function, which tells paintWrapper to start. Essentially, this func-
tion block is just there to ensure that the API function blocks are loosely decoupled from the rest
of the program. As with the DIP example, we could abstract this out more, but even with this
implementation, the code will be more loosely coupled than most non-SOLID PLC projects. In

fact, many PLC programs that implement the DIP will usually use a pattern similar to this.

In this diagram, the two APIs can be thought of as generic vendor APIs. In this design, the high-lev-
el logic of the PLC program does not need to know how these APIs work or even what they do.
All the high-level logic needs to do is funnel through our wrapper, and that logic will utilize the

vendor APIs.

324 Advanced Coding: Using SOLID to Make Solid Code

Overall, this design is about as SOLID as a PLC program is going to get. Realistically, you're not
going to implement all these principles in a single project. However, even if you implement just

a few of these principles, your PLC code will likely be light-years ahead of your competitors.

Summary

As was seen in this chapter, SOLID can take some extra effort during the design phase. However,
when done correctly, these five principles can ensure that your code is easy to fix and expand
upon. In the fast-paced world of industrial automation, this is a must. You need to be in and out

of a customer site as quickly as possible, and SOLID can foster this.

Each of these principles will take some time to master, but once you do, the payback will be
well worth it. At this point, you should have a good enough background to start expanding your
knowledge and experience on these concepts. Hence, with all this in mind, we can now move on

to another very important aspect of automation programming: HMI design.

Questions

1. What are common code modules?

2. What should you do if the word “and" appears in the summary of your module?
3. Whatis the interface segregation principle?
4.

Name the five principles of SOLID.

Further reading
e SOLID: The First 5 principles of Object-Oriented Design: https://www.digitalocean.com/

community/conceptual_articles/s-o-1-i-d-the-first-five-principles-of-object-
oriented-design

e SOLID: https://en.wikipedia.org/wiki/SOLID

e Exploring the Liskov Substitution Principle: https://www.infoworld.com/article/2971271/

exploring-the-liskov-substitution-principle.html

e LSP: The Liskov Substitution Principle: https://medium.com/@gabriellamedas/1sp-the-
liskov-substitution-principle-e43910b638bc

https://www.digitalocean.com/community/conceptual_articles/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://www.digitalocean.com/community/conceptual_articles/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://www.digitalocean.com/community/conceptual_articles/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://en.wikipedia.org/wiki/SOLID
https://www.infoworld.com/article/2971271/exploring-the-liskov-substitution-principle.html
https://www.infoworld.com/article/2971271/exploring-the-liskov-substitution-principle.html
https://medium.com/@gabriellamedas/lsp-the-liskov-substitution-principle-e43910b638bc
https://medium.com/@gabriellamedas/lsp-the-liskov-substitution-principle-e43910b638bc

Chapter 12 325

Join our community on Discord

Join our community’s Discord space for discussions with the authors and other readers:
https://packt.link/embeddedsystems

https://packt.link/embeddedsystems

Part 3

HMI Design

In this section, you’ll shift your focus to creating intuitive, functional human-machine interfaces
(HMIs). You’ll learn how to design user inputs and outputs, build clean and effective layouts, and
craftinterfaces that guide operators naturally through complex systems. This section also covers
the critical topic of alarms: how to design them, prioritize them, and implement them safely to
prevent catastrophic mistakes. By the end of this part, you’ll understand how thoughtful HMI

design improves usability, safety, and overall system performance.
This part of the book includes the following chapters:

e Chapter 13, Industrial Controls: User Inputs and Outputs
e Chapter 14, Layouts: Making HMIs User-Friendly

e Chapter 15, Alarms: Avoiding Catastrophic Issues with Alarms

13

Industrial Controls: User Inputs
and Outputs

The cold reality is that the customer isn’t going to care about your codebase. You could have the
most eloquently written program ever produced, and the machine it’s on may still be considered
a failure by the customer. When it comes to the customer or end user, all they are going to care
aboutis how they interface with the device. This means that a well-written Ul is key to the success
of amachine. If the Ulis bad and hard to use, the machine is also going to be hard to use, and vice

versa, no matter how well the software is written.

The key to the success of any machine is what’s known as the human-machine interface (HMI).
Though often delegated to the junior developer of the group, the HMI is a vital component of the
device, and it will dictate whether the machine will be in operation for 20 years or 20 minutes.

HMI development is as much an art as it is a science.
In this chapter, we’re going to explore HMI development by covering the following topics:

e Introduction to HMI design
e Switches

e Buttons

. LEDs

e Potentiometers

e Sliders

e Spinners

330 Industrial Controls: User Inputs and Outputs

L] Measurement controls

e Control properties

Once we’ve explored all of the common controls, we’re going to build a sample HMI panel, as

well as some PLC code for the controls to interface with.

Technical requirements

If you opted to use another development environment, you need to download and use CODE-
SYS for this chapter with the visualization tool installed. The project that will be developed in
this chapter can be downloaded from https://github.com/PacktPublishing/Mastering-PLC-
Programming-Second-Edition/tree/main/Chapter%2013.

CODESYS Visualization

\/V You may need to separately install the visualization kit separately. You can do this
by launching the CODESYS installer under the tools tab. Once there you can click

on the Browser tab and search for Visualization to install the kit.

HMI development is as much an artistic endeavor as it is an engineering practice. I strongly
recommend that you pull down the code and modify it using the principles that will be covered

in this chapter.

Introduction to HMI design

In the old days of automation, the way an operator interacted with a machine was with a physical
control panel that consisted of physical components such as switches or buttons. This could easily
lead to bottlenecks and restricted progress as modifying or fixing the panel would cost time and
money. In the modern automation era, the physical panels of old gave way to programs that live

on a touchscreen computer. These programs are called HMIs.

HMI is industrial jargon for a specialized piece of software that allows machine operators to eas-
ily interface and control the machine. In other words, an HMI can be thought of as an industrial
UI (User Interface). The HMI will be the point of contact for the operator. This means that an
HMI must be easy to use and well laid out. Often, the HMI will determine whether the end user

considers the machine a success.

https://github.com/PacktPublishing/Mastering-PLC-Programming-Second-Edition/tree/main/Chapter%2013
https://github.com/PacktPublishing/Mastering-PLC-Programming-Second-Edition/tree/main/Chapter%2013

Chapter 13 331

HMIs offer much flexibility and reliability over their physical counterparts. Since an HMI is a
software program, if new features are added to the machine, updating the user panel s as simple
as adding the necessary controls to the screen and setting up the necessary logic. Also, unlike
their physical counterparts, the controls of an HMI will not break. When it comes to an HMI, the
only thing that can fail, and it will sooner or later, is the computer on which the HMI program

lives or is displayed.

How are HMIs made?

Since HMIs are programs, there are many ways to produce them. There are various software
packages that are specifically designed for HMI development such as C-more and Red Lion. These
types of packages usually use simple drag-and-drop software components and are uploaded to
specialized computer hardware thatis designed to run the HMI. You can also use a SCADA system

such as Movicon for HMI development.

If you’re particularly savvy with programming, you can also use a general-purpose programming
language such as Java, C#, C++, or some other high-level language. Though not commonly used
anymore for traditional programming applications, Delphi and VB.NET are still commonly used in
the automation world to create HMIs. Developing an HMI with a traditional language such as Java,
C#, or a series of web-based technologies will offer much more flexibility and power, but it will
take much more time and technical knowledge to develop. However, more complex architectures
and processes can be used with these HMIs. For example, technologies such as containerization,

cloud computing, and AI/ML can be easily integrated into the system.

When using a general-purpose programming language to develop an HMI, you will typically use

a graphical framework like the following:

e WinForms

¢ WPF
° QT
e JavaFX

HTML5/CSS3/JavaScript

\/K/ These technologies are not frameworks, as they are used to create frontend web
applications. These technologies are becoming the norm in automation, especially

in places that have adopted concepts that are found in Industry 4.0

332 Industrial Controls: User Inputs and Outputs

CODESYS and similar systems typically have some type of simple HMI development system that
can be used to create basic soft control panels. However, before we start digging into creating an

HM], we need to understand a few basic principles.

Basic principles for designing an HMI

Designing an HMI is like designing any other UI; the first step is to wireframe it. Wireframing
involves creating a rough sketch of the way the UI controls should be positioned. An example of

this is shown in Figure 13.1:

Power Valve 1 Pressure
(btn | led
Valve 2
led led

|
| Pressure pot

Figure 13.1: Wireframe example

When it comes to layouts, controls with similar responsibilities should be stacked vertically, with
their label either on, to the left, or to the right of the control. You can also center the label above
or below the control. Ideally, you want to label the controls similarly to what’s shown in Figure

13.1; however, that is not always possible.

The responsibility of an HMI

How much should an HMI do? This is a great question, and itis very important. In short, an HMI
should be dumb. This means thatits primary—and hopefully only—responsibility is to take user
inputs from the operator and display data from the PLC. Typically, you do not want any complex
logic in the HML. It should not do any computations, process any data, or make any decisions

related to the PLC’s operations.

Chapter 13 333

With that, the notion of a dumb HMI is evolving. As new technologies are adopted, what’s consid-
ered basic operations is also changing. For this book, we’re only going to use an HMI as a means
to input and display data. For high-tech facilities such as smart factories, this may differ as the
HMI may be responsible for basic security, grouping users, and so on; however, that will vary. The

best rule of thumb is to delegate as little responsibility to the HMI as possible.

These are basic design principles that will be explored throughout the rest of this book. With that,

we need to learn the steps involved in creating an HMI.

Adding an HMI

The easiest way to create an HMI project s to simply create a standard project, something we have
done throughout this book. Once you've created a project, you will want to right-click Application,

navigate to Add Object, and select Visualization..., as shown in Figure 13.2:

Communication Manager...

|] Add Object »
C) Add Folder...

[] Edit Object
Edit Object With...

q Login

Delete application from device

Data Sources Manager...

DUT...

External File...

Global Variable List...

Global Variable List (tasklocal)...
Image Pool...

Interface...

Network Variable List (Receiver)...
MNetwork Variable List (Sender)...
Persistent Variables...

POU...

POU for Implicit Checks...

Recipe Manager...

sl S Ny

Redundancy Configuration...

CICEE EYEE

]ma'es'-msem

Symbol Configuration...

Text List.. grror(s) |

Trace...

Description
Trend Recording Manager...
Unit Conversion...
Visualization...

Visualization Manager...

B Modules

Figure 13.2: Adding an HMI to a project

334 Industrial Controls: User Inputs and Outputs

Note

&

Depending on your version of CODESYS you may have to install the visualization
tool separately!

Once you’ve done this, you’ll see a window similar to the one shown in Figure 13.3:

Add Visualization
@ Creates avisualization object

Name:
Visualization

X

Symbol libraries Active
@ VisuSymbols (System) (]

A visualization symbol library is a CODESYS library with
graphics and graphical objects. If the visualization symbol
library is assigned thelibrary is added into the POUs library
manager. The graphics and graphical objects are shown in the
toolboxwhen a visualization editor is the active editor.

Figure 13.3: Add Visualization

Click Add and wait a few minutes for the controls to render. Upon completion, you will be met
with a new area to the right of the screen that contains HMI controls; see Figure 13.4. As can be

seen in the figure, there are many different controls to choose from, including LEDs and switches

Chapter 13 335

Visualization Toobox v x
RN

Common Controls Alarm Manager Measurement Controls

e 4
Lamps/Switches/Bitmaps | Special Controls | Date/Time Controls | Favorite

2 @

Image Switcher Lamp Dip Switch Power Switch

@@ A @

Push Switch Push Switch LED Rocker Switch Rotary Switch

Figure 13.4: HMI controls

The preceding figure shows all the controls you can use. Each tab will contain more controls, so

each tab is worth exploring. Now that we can add an HMI to the screen, we can start exploring!

Exploring common HMI controls

All systems need some way for the operator to send input signals and receive feedback. For purely
physical systems, switches, buttons, and so on are used for the inputs, while control elements
such as LEDs and gauges are used for the outputs. This can be costly, and in the modern com-
puter-driven world, this can also be unnecessary as we can simply program in our controls. As

such, the remainder of this section will explore software-based controls.

Flip switches

Aswe alllearned in high school, a switch causes a breakin a circuit that will essentially cause the
flow of electricity to stop when it reaches the switch. In other words, with the switch closed, the
electricity is free to flow in the circuit, which will cause the equivalent of a TRUE condition. If the
switch is open, the electricity will not be allowed to flow throughout the circuit, which will cause
a FALSE condition. In terms of HMIs, a switch can be thought of in a similar sense. A digital HMI
switch will behave the same way as a physical switch will. When the switch is on, the variable

thatitis attached to will be set to TRUE, and when the switch is off, the variable will be set to FALSE.

336 Industrial Controls: User Inputs and Outputs

Two common types of HMI switches are the rocker and dip switch, both of which can be seen in
Figure 13.5.

Dip Switch

Rocker Switch

Figure 13.5: Flip switches

These are flip switches, and they behave similarly to a common wall switch. When you flip the
switches up, they will produce a TRUE condition, and when they are flipped down, they will cause
a FALSE condition. The only way to toggle a switch’s state is to toggle the switch itself. Switches
like these are commonly used to put things into a given state until the operator decides to change
that particular state. For example, the operator can flip a switch up to turn a fan on and flip it

down to turn a fan off. Now that we understand what flip switches are, let’s look at push switches.

Push switches

Another type of switch is the push switch. A push switch will behave the same way as a flip switch,
butinstead of flipping it, you will push it. In their non-pressed state, push switches will produce
a FALSE state; while pressed, they will produce a TRUE state. The CODESYS HMI builder offers

a few different types of push switches. Two common push switches can be seen in Figure 13.6:

Push Switch Push Switch LED

Figure 13.6: Push switches

Now that we’ve explored switches, we can move on to buttons, which are their derivatives.

Chapter 13 337

Buttons

As with flip switches, buttons behave the same way as their physical counterparts do. An HMI
button will only change states while the button is pressed. In general, when the button is released,
the state will change back to whatever it was before. However, many HMI development systems
will allow you to configure the button so that it latches a bit or pulses for a single scan. Typically,
you will want to use a button to perform operations such as jogging an axis into position, starting

a process, inputting data, changing/opening an HMI screen, and so on.

For most HMI systems, buttons are much more customizable in terms of appearance. You can
customize their color, the text that appears on them, whether they will be normally on or normally
off, and so on. A typical button in its default state—in other words, when you add a button to the

screen—can be seen in Figure 13.7:

Button

Figure 13.7: Button

However, after customization, you could make it look like the button shown in Figure 13.8:

Hopper Screen

Figure 13.8: Customized button

Buttons are very important components. In my experience, I have always found myself using but-
tons more than switches. There is no set rule for when to use one over the other, so long as you get

your desired results. However, as a general rule, would use buttons in the following situations:
e Changing an HMI screen
e Starting a process that will end and needs to be restarted
e Entering data
e Jogging components into place
Switches and buttons are very common, powerful HMI components. At their core, they are inputs

for Boolean variables. With that being said, if switches and buttons are inputs, LEDs are their

outputs. Let’s take a closer look.

338 Industrial Controls: User Inputs and Outputs

LEDs

One of my favorite HMI components is LEDs. Nothing screams advanced technology more than
blinking lights! Ever since I was a child, I have loved playing with LEDs, and as an adult, not
much has changed. I still have to constantly keep my love of adding lights to my HMI control
panels in check.

In CODESYS, LEDs are referred to as lamps; however, in everyday speech, any light indicator is
normally referred to as an LED. So, for this book, we will use the term LED to refer to lamps. LEDs
are, in my opinion, one of the simplest and most powerful status indicators an HMI developer

can use. An LED, or lamp, in CODESYS will look like what’s shown in Figure 13.9:
Figure 13.9: CODESYS LED/lamp

LEDs can serve multiple purposes in an HMI. They can determine the status of a device, indicate
whether a component s on or off, whether there is an issue, whether there is about to be an issue,

and so on. In CODESYS, LEDs can be set to five different colors: red, yellow, green, blue, or gray.

X L

Figure 13.10: The five LED colors

The primary way LEDs are used to relay status information is via their color. Colors such as red,

yellow, and green all have meanings that can signify a certain status.

LEDs will be used a lotin your day-to-day life and throughout the rest of this book; however, for

now, we’re going to switch gears and talk about potentiometers (pots).

Potentiometers

Outside of switches, arguably the other most common HMI control is the potentiometer or, as it
is most commonly referred to, pot. In a nutshell, pots allow you to input a numerical value in a
range. For example, in the same way a physical pot will allow you to adjust the resistance in an

electrical circuit, an HMI pot will allow you to adjust a value in the software.

Chapter 13 339

Pots have many different uses and are very common in HMI development. They are commonly
used in applications that require temperature control, such as ovens, and speed control input,

and they are even used as inputs for things such as part counters. A pot is depicted in Figure 13.11:

Figure 13.11: Potentiometer

By default, a pot will have a range from O to 100; however, this can be adjusted. When working
with pots, it is very important to remember to adjust your range. This is a common mistake that
even the most experienced HMI developers make. So, when you’re working with pots, it is worth
keeping thatin mind. Similar to switches and buttons, pots also have cousins in HMI development
called sliders. Now that we have a grasp on pots, we are going to switch gears again and take a

quick look at sliders.

Sliders

Sliders can best be thought of as pots that are depicted as straight lines. Sliders work similarly
to pots. For the most part, anywhere you can use a pot, you can use a slider, and vice versa. The
differences between pots and sliders are mostly aesthetic. Sliders in CODESYS are depicted in
Figure 13.12:

Figure 13.12: Slider

Sliders can be customized in much the same way pots can. For example, you can customize at-

tributes such as the range in the same way you can with pots.

340 Industrial Controls: User Inputs and Outputs

In my experience, both sliders and pots can be difficult for operators to work with. A large part
of this is due to operators usually wearing work gloves while interacting with the screen. In my
opinion, sliders are a bit harder to work with than pots due to them being smaller, and typically
nothaving a range on them. However, this is just my opinion, your experience and your customers’
experience may be different. Either way, pots and sliders are excellent input controls, and any

HMI developer should have a basic understanding of both.

In terms of the data type of the variable, it is common to use an integer type for both sliders and
pots. You can use a REAL type, but your ability to control the full resolution of the value will be
greatly affected. For example, it will be hard to hit a specific number after a point. If you need a
floating number, you may want to opt for a numerical input such as a keypad. Generally, I never
like using pots or sliders for any inputs that need a value of less than 1. In other words, if you need
a high level of precision, you probably don’t want to use either of these types of controls. With

all that in mind, we can now explore spinners.

Spinners

Spinners are another input control. Different from pots and sliders, spinners have an up-and-
down button that allows operators to adjust the value. Essentially, spinners are very simple and
handy. Usually, for many applications where a slider or pot may be inefficient, a spinner can be

an excellent alternative. A simple spinner can be viewed in Figure 13.13:

Figure 13.13: Spinner

If you use a spinner, you should set a maximum and a minimum value. Essentially, these values
will act as the range for the spinner. The buttons that can be used to set the value can be seen in
Figure 13.13. When the up button is clicked, the value in the spinner will increase, whereas when
the down button is clicked, the value in the spinner will decrease. The one downside of spinners
is that the buttons on the spinner can be hard to click when they are small. As such, when you do

use spinners, it is important to consider the button size to aid the operator’s ease of use.

In all, spinners are very simple but very powerful controls. Similar to pots and sliders, spinners

are excellent for operator inputs.

Now that we have explored spinners, we can focus on measurement controls, which can display

data from the PLC or input controls.

Chapter 13 341

Measurement controls

While an LED is a common readout for a control, such as a switch or a button, measurement
controls, such as gauges and bar graphs, are used as readouts for controls such as pots and sliders.
Readout controls usually vary the most between HMI development systems. In CODESYS, the
readouts are mostly analog. These controls are handy for displaying things such as temperature

or pressure. CODESYS offers several different styles of readouts to choose from.

The following control readouts can be used for many different applications. First, let’s look at

Figure 13.14, which shows a bar graph.

Figure 13.14: Bar graph

Abar graph is a simple straight line with a green bar inside that points to a value. As the value of
the variable increases, the green line will as well. A bar graph is great for things such as showing

the percentage of a job that is complete, and so on.

Figure 13.15: 90° gauge

The 90° gauge works the same way as the bar graph does, butit has a more compact and different

style.

Figure 13.16: 180° gauge

342 Industrial Controls: User Inputs and Outputs

The preceding figure depicts a 180° gauge while the following figure depicts a 360° one. Both
function similarly to the other gauges, with the only difference being the style.

Figure 13.17: 360° gauge

For the most part, the only real differences between the different displays are their shapes. As with
pots and sliders, you will need to set the range on these as well. As shown in Figures 13.14 to 13.17,
gauges range from O to 100 by default. This means that if you’re planning to have input values
that are more than 100 and you don’t set these values, you're going to peg out the gauge before
you reach the upper limit of the control. So, the moral of the story is that whenever you use pots,

sliders, or gauges, you need to remember to change your ranges for the controls!

Histograms

Though it is not a gauge, another measurement control that can be used is a histogram. Histo-
grams show the current values in an array. They are excellent for applications such as reading

temperature from multiple thermal couples or pressure from multiple pressure gauges.

Histograms are great controls, have many different use cases, and excel at displaying real-time

data. They are great for monitoring:
e Real-time temperature readings
e The statistics of a machine run
e Monitoring the status of multiple production lines
e Thevoltage/current that is being drawn from different parts

Essentially, the ideal use case for a histogram is for monitoring real-time data. An example of the

output for a histogram can be viewed in Figure 13.18:

Chapter 13 343

100.0—, —100.0
80.0— -80.0
60.0 60.0

40.0— 1-40.0
0.0 _ L 0.0

Figure 13.18: Histogram

As stated previously, histograms work off an array. Unlike gauges or LEDs, which read a single
variable, histograms read an array. The following code was used to generate the graph data shown

in Figure 13.18:

PROGRAM PLC_PRG
VAR

hist : ARRAY [1..4] OF INT;
END_VAR

The variables were set with the following code:

hist[1] := 1@;
hist[2] := 30;
hist[3] := 25;
hist[4] := 42;

As can be seen from the histogram and its respective code, the value of each element in the array

will correspond to a bar in the graph.

Text fields

Arguably, one of the most important controls that you will use is a text field. Text fields will
generally spin up a keyboard or require the use of an external keyboard, depending on the sys-
tem. Most HMI development systems will generate a keypad of some type when the text field is
interacted with; however, if you use a general-purpose programming language, you will either
have to use a physical keyboard, the keyboard provided by the computer that the software lives

on, or code one up.

344 Industrial Controls: User Inputs and Outputs

A text field provides many benefits over controls such as sliders or pots. For instance, they allow
your operator to enter data more easily as they can press numbers or letters, and they provide
them with a better level of control. For example, if the operator must enter a decimal value, they
can with relative ease by simply inputting the value. This differs from trying to manipulate a slider

or pot, which can be difficult with a glove on. Here are some common use cases for text fields:

e Inputting decimal values

e Entering raw text for things such as job run metadata, which can include the operator’s

name, the date, the customer’s name, and more
e Inputting the number of parts to make for a job run
e Inputting precise temperatures
o Inputting precise voltages

e Programming machine movements
There are many more use cases; the only real limit is your imagination as a programmer.

Adding a text field to the screen is as easy as dragging and dropping itin a desired location. Once
you’ve done that, you need to configure it. To configure the control, you will need to add the

following to the Texts property:

Input: %s

Once you've done that, you should have a text field similar to the one shown in Figure 13.19.

Input

Figure 13.19: Partially configured text field

A text field will usually be connected to a PLC variable. This variable will hold the data that the
user inputs; therefore, you will want to add a variable to hold the input, similar to what we did
with the other controls. Once you’ve done that, navigate to Inputs and OnMouseClick. Thereafter,
you will need to click the field with the three dots, as we did previously, and configure the pop-up

so that it matches what’s shown in Figure 13.20:

Chapter 13 345

Input Configuration %

OnMouseClick

¥ amtivs ¥t Veistle Write Variable
Open Dialog
Change Language Input type
Change Shown Visuskization isuDialogs. Numpad| ~
Execute Command Choose varisble to edit
Switch Frame Visualization
4§ Write Variable © Use text output variable
Execute ST-Code () Use another variable
* Toggle variable 5
£ Fie Transfer
" Initial display format
Min length -
Max length P
Dialogtitle -
[C) Password field
Position to open input dialog
O Useglobal setting(from Visualization manages
() Centered

(o] ome
Figure 13.20: Text field configuration

Atthis point, click OK and run the program. When you click the text field, you should see a keypad
appear, as shown in Figure 13.21:

=
=
—
-

Figure 13.21: Input pad

346 Industrial Controls: User Inputs and Outputs

Now, enter a number and click the OK button on the pad. Go back and check the variable that

you assigned to it; notice how the variable matches what you typed in.

This is a common numerical keypad. As can be seen, it has numerous buttons, such as a Clear
button and ESC. There are even buttons for changing the sign of the value you enter. In short, the
keypad has everything you need. Though the keypad has several powerful features, if you need
something more intricate, such as complex mathematical operators, you will typically need to
code one up in a general-purpose programming language or use one of the more complex key

inputs that are supported in CODESYS.

Typically, built-in keyboards and keypads are great for basic things; however, if your application
needs more input, you will have to figure out either how to use the operating system’s built-in
keyboard or code one up. A good rule of thumb is to design your HMI around your expected inputs.
This will ensure that your application has all the necessary input controls for the operator to use.
I have seen less experienced HMI developers fall into this trap and not fully think out their inputs
before they design the HMI. As a result, their otherwise great HMI required extensive rework,

which cost lots of time and money.

At this point, we have explored many of the controls that CODESYS offers. CODESYS offers many
more tools, but, for the most part, these are the basic controls that you’ll need to know about to
getyou through a project. Now that we know what the various controls do, we need to know how

to customize them via the Properties menu.

Control properties

The core of any control is setting up its properties. The Properties screen will vary for each control.

An example of such a Properties screen can be seen in Figure 13.22:

Chapter 13 347

Properties v B
 Fiter ~ | ¥ Sortby ~ 2 Sortorder ~ [¥] Advanced

Property Value
Element name GenElemInst_2
Type of element Rocker Switch

+ Position
Variable

'+ Imagesettings
Element behavior Image toggler

i+ Texts

= Statevariables

Invisible
Deactivate inputs

i+ Center

= Absolute movement
+ Movement

Rotation
Scaling
Interior rotation
Animation duration 0
Bring to foreground
+ Background

This property contains the name of the instance that will represent the selected visual
element in the visualization.

33 ToolBox . Properties @ Visualization Toolbox | Y Notifications
Figure 13.22: Rocker switch Properties menu

Figure 13.22 shows the Properties screen for a Rocker Switch element. You will need to set the
properties for each component you have on the HMI, even if the controls are the same. For ex-
ample, if you have 20 rocker switches, you will need to set the properties for each one to ensure

they behave properly.

348 Industrial Controls: User Inputs and Outputs

As stated previously, itis very important to remember that each control type will have a different
set of properties that need to be configured. There will be common fields for each control, but
each control will ultimately have different fields that need to be set up. Itis important to become
familiar with the controls that we have studied, as they will vary. At this point, we have explored
many common controls and covered the basics of how to configure their behavior.; therefore,

we’re going to move on to our final project.

Final project: Creating a simple HMI

For this project, we are going to create a simple HMI that can control a histogram. The HMI we
are going to create will be straightforward: when a switch is flipped, an LED is going to turn on,
and a pot will become visible. When the pot appears, we will be able to turn the pot to adjust one

of the lines on the histogram. With that in mind, let’s set up some basic requirements.

Requirements for the HMI
The HMI will need the following:

e Four rocker switches that will control the visibility of four different pots
e Four LEDs that indicate when the rocker switch is on

e Four pots that will only be visible when the rocker switch is on

e Each pot will control exactly one bar on the histogram

e Both the pot and the histogram will have a range of 0 to 100 (default range)

With these requirements in mind, minimal code will be required to make the HMI function as

intended. These requirements also dictate that there will be the following controls:

e Four rocker switches
. Four LEDs
e Four pots

e One histogram

Designing the HMI
From these requirements, we can move on to the design phase and layout of our HMI. Much

like coding, there is no set way of laying out an HMI. So, we’re going to use a layout that looks

similar to this:

Chapter 13 349

100.0 1000
4 80.0 80.0
600 60.0
2 400 400
200 200
3 00 00

&

Figure 13.23: HMI layout

In this layout, we have four rocker switches next to their corresponding LEDs. The focal point
of the HMI is the histogram in the middle. Underneath the histogram reside the four pots that
will control the bars in the output. In short, this is a condensed design that will get the job done.
However, this isn’t the only design that can accomplish the job. For fun, I recommend that you

play around with the design to see whether you can improve the layout.

Now that we have a design in place, we can start building the HMI.

Building the HMI

The code for the HMI will consist mostly of variables. There should be four switch variables that
are tied to LEDs and an Invisible field. However, to make the pot visible when the switches are
on, we will have to add four additional variables that will be the inverse of the state of the switch.
This may seem to be counterintuitive, but a True variable in the Invisible field for the pot will
cause the pot to be invisible. This will create a counterintuitive situation. For this example, for
learning purposes, we will remedy this problem with PLC logic but note that there is a better

method of accomplishing the same task, something we will explore later on.

The variables for the HMI will look like this:

PROGRAM PLC_PRG

VAR
hist : ARRAY [1..4] OF INT;
swl : BOOL;

350 Industrial Controls: User Inputs and Outputs

sw2 : BOOL;
sw3 : BOOL;
sw4 : BOOL;
potl : BOOL;
pot2 : BOOL;
pot3 : BOOL;
pot4 : BOOL;
END_VAR

The logic will look like this:

potl := NOT swl;
pot2 := NOT sw2;
pot3 := NOT sw3;
pot4d := NOT sw4;

This logic will simply invert the Boolean state of the rocker switch. These inverted variables will
be responsible for causing consistent visible/invisible behavior when used with the current state

of the switch.

If you take a closer look at the variables, you will notice that an array has been declared. This array
will be assigned to the histogram. Each pot will be assigned an element of the array. Therefore,

the graph will dynamically update when the pots are turned.

Once the variables are in place, you can start to add the controls to the screen. This is a simple
task as all you have to do is select the different controls and, with your mouse button held down,
drag them to the screen. Once they are on the screen, you can move them around as needed and

resize them. Lay out the elements in a similar fashion to what can be seen in Figure 13.23.

With all this set up, we need to start assigning variables to the HMI components. The first controls

we are going to hook up are the switches and the LEDs:
1. Allwehaveto dois select the control and find the Variable field, as shown in Figure 13.24:
Variable

Figure 13.24: Empty Variable field

Chapter 13 351

To assign a variable, click on the button with the three dots on the right. You should see

a pop-up similar to the following:
Input Assistant X

Text Search Categories

Variables & Name Type Address Origin
= o Application Applcation
=-[E] pLc_PRG PROGRAM
i~ @ hist ARRAY [1..4] OF INT
P potl 5oL
¥ pot2 BooL
pot3 BOOL
? potd 8O0t
P swi FOox
P sw2 BOOL
sw3 BooL
P swd
* Visu_Super...
{} peD CAA Device Diagnosis. ..
+ @ 10Config_Globals VA
8 structured view Filter None v
- Insert with arguments Insert with namespace prefix
Documentation
pot4: BOOL(VAR) A

(o] o

Figure 13.25: Input Assistant

Select the corresponding variable for each switch and LED. In short, you will assign a

switch variable to both the rocker switch and the LED that is next to it.

Once you've done that, you can move on to setting up the pots. These will require a little

more setup than the switches and LEDs.

352 Industrial Controls: User Inputs and Outputs
4. For the pots, you will need to set up the Variable and Invisible fields.
= Statevariables
Invisible
Deactivate in...
Figure 13.26: Pot Invisible field
5. Assign the corresponding pot variable to this field using the same process that we used
with the LEDs and switches. When you are finished, your field should look like this:
= State variables
Invisible PLC_PRG.pot1
Deactivate in...
Figure 13.27: Pot Invisible field with variable
6. Repeat this process for each pot.
7. Atthis point, assign the hist array element to the pot’s Variable field.
Variable PLC_PRG.hist[1]
Figure 13.28: Pot variable
8. Youwill have to add the square brackets and the element number to the end of the variable.
9. Repeat this process for each pot variable.
10. This will be very simple: all you will have to do is assign the array to the Data array field

in the histogram’s Property menu. Adding this array will be the same as adding a normal
variable. When you are done, the field should look like this:

Data array PLC_PRG.hist

Figure 13.29: The Data array field for the histogram

Chapter 13 353

With this final component set up, you can now start the HMI by performing the same set of steps

that we used to run the PLC code.

Figure 13.30: Working HMI

In this case, we have two pots turned off and two turned on. We can move the pots and watch

the chart change.

Now, what we have works, but it is not the best solution. For this HMI to work, we have to have
code that inverts the switch’s state. To accomplish this, we created PLC logic. This is a bit un-
necessary and somewhat bad, as we now have the PLC doing a menial task. For our purposes, a
better solution would be to getrid of the pot variables altogether and simply put the NOT keyword

in front of the switch variable, similar to what’s shown in Figure 13.31.

= Statevariables
Invisible NOT PLC_PRG.sw1
Deactivate in...

Figure 13.31: Switch variable with the NOT operator

354 Industrial Controls: User Inputs and Outputs

When the variables are set with the NOT operator and run, we can observe the same behavior.

Figure 13.32: Inverted variable in the Properties menu

The main takeaway is that we can manipulate an HMI via the PLC code or through the HMI
properties. For our purposes, adding the PLC code was not the optimal solution. However, there
will be times when manipulating the HMI via the PLC code will be the optimal solution. A gen-
eral rule I like to go by is to try to keep the HMI control manipulation on the HMI side. This isn’t
always possible, but it should be strived for as it will cause less code bloat and free up your PLC

to complete more important tasks.

With that, we have created a functioning HMI. At this point, I recommend modifying the current
HMI so that you get acquainted using the low-code tooling that is provided in CODESYS. Most
of the major HMI and SCADA development packages implement a similar method for creating

HMIs, so you're going to want to get used to using the tools as they all work similarly.

Summary

In this chapter, we explored common HMI components such as switches, buttons, LEDs, pots,
sliders, and spinners. We also learned how to hook up HMI components and how PLC code can
manipulate the controls. Then, we explored how simply using commands in the Properties field

can allow us to manipulate the controls without the need for the PLC.

AsThave stated previously, HMI development is as much an art asitis a science. The next chapter
will be dedicated to best practices of laying out an HMI so that your operators can use it effectively.

For now, I strongly recommend getting used to the controls and the layout of the Properties menu.

Chapter 13 355

Questions

1

2
3.
4

What s a button?
What kind of data structure do histograms take?
Can we add keywords to a property field?

Can we manipulate an HMI via PLC code? If so, when should we?

Further reading

CODESYS visualization: https://content.helpme-codesys.com/en/CODESYS%20

Examples/_ex_visualization.html

Get This Book’s PDF Version and
Exclusive Extras

Scan the QR code (or go to packtpub.com/unlock). Search for this
book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

]

https://content.helpme-codesys.com/en/CODESYS%20Examples/_ex_visualization.html
https://content.helpme-codesys.com/en/CODESYS%20Examples/_ex_visualization.html
http://packtpub.com/unlock

14

Layouts: Making HMIs
User-Friendly

HMI development has a lotin common with graphic design. Much like with graphic design, there
are a few rules that should be followed as closely as possible to ensure that the HMI is user-friendly.
There is a difference between laying out an HMI and something akin to a website. I usually like to
consider HMIs as the cousins of traditional user interfaces. Both types of interfaces have certain

things in common, such as a logical layout and efficient coloring.

Though these types of user interfaces are cousins to one another, an HMI will have a person
staring at it much more often. As such, certain factors must be considered that would normally

be ignored when developing something such as a website.

Due to operators using the HMI more frequently and in a much more high-paced and mission-crit-
ical environment, HMIs need to be easy to use, easy to look at, well organized, as consistent as
possible with other machines, and provide just enough information for the operator to do their
job without overloading them with too much information. This means that things as simple as
color selection are vital to the success of the HMI. To create a successful, functional HMI, we are

going to explore the following concepts:

e Colors
e Grouping/positions
e Blinking

e Organizing the HMI into multiple screens

358 Layouts: Making HMIs User-Friendly

To round out the chapter, we are going to create a simulated carwash HMI screen that would be

found at a kiosk.

Technical requirements

Like in the previous chapters, the only technical requirement for following along is a working copy
of CODESYS that has the visualization package installed. The code for this chapter can be found
at the following page: https://github.com/PacktPublishing/Mastering-PLC-Programming-
Second-Edition/tree/main/Chapter%2014.

The importance of colors

Believe it or not, colors can utterly sink an HMI. Choose the wrong colors and your HMI will
literally hurt your operator’s eyes. A general but not normally followed rule is that you want to
use dark, pastel colors for your HMI. This will reduce the contrast of the HMI screen and make it
easier to operate. As a rule of thumb, you want to avoid bright colors. Normally, HMI developers
will opt for colors such as black or gray for backgrounds and different shades of gray for control

colors. To start the color discussion, let’s look at backgrounds.

Backgrounds

In terms of backgrounds, most industrial guidelines recommend shades of gray. Outside of the
guidelines, I like to stick with shades of gray as a personal aesthetic choice unless specified oth-
erwise. However, some organizations I have worked for have primarily used black or shades of

dark blue as backgrounds to great success.

Black backgrounds are excellent; however, they do require a bit more work when there is heavy
use of labels, and if you're not careful, it can cause eye strain in the wrong environment settings.
To put that in perspective, you’ll probably have to adjust label colors for any background, butin
my opinion, black requires a more drastic change. Consider Figure 14.1; upon studying the figure,

the first thing you may notice is that there is a heavy contrast between the components.

https://github.com/PacktPublishing/Mastering-PLC-Programming-Second-Edition/tree/main/Chapter%2014
https://github.com/PacktPublishing/Mastering-PLC-Programming-Second-Edition/tree/main/Chapter%2014

Chapter 14 359

Figure 14.1: Black background HMI

Comparing Figure 14.1 to Figure 14.2, the dark gray creates less contrast, and the labels are easier
to see; however, the lighter background will be a little harsher on the eyes compared to the black

background.

Figure 14.2: Dark gray background HMI

360

Layouts: Making HMIs User-Friendly

Note

\C/\, Neutral colors, such as shades of gray, blue, and black, are typically preferred by many
o

organizations. However, it is not uncommon for people to ignore that rule and use
whatever colors look good. So, keep in mind that aslong as your operators can easily

see the device and are not going home with migraines, you can use what you want.

In short, the black background is a bit easier to look at, especially in low-light environments, but

the gray background is easier to work with in terms of contrast and is closer to compliance with

industry guidelines. In all, you're going to have to do some color matching with both, but the

gray background is generally favored.

The meanings of red, yellow, and green are pretty much universal across the world. In the next

section, we’re going to explore how to leverage these colors in our HMIs.

Red, yellow, and green

The colors red, yellow, and green are everywhere, from streetlights to industrial machinery. They

are so common that their meaning is almostingrained in us. However, the following list is going

to explore the three colors and how to use them to great effect in an HMI:

Red: The color red is usually an indicator that something is wrong or stopped and is
typically associated with an alarm. You usually reserve red for alarms, controls such as
buttons that can go into an erroneous state, stop/off LEDs, critical warning LEDs, or
controls that are indicating that something is reaching its operational limits. By instinct,
anytime the operator sees red, they will assume that there is something wrong so you

must use the color cautiously.

Yellow: Yellow is an odd color. Yellow is in-between green and red in terms of meaning.
Yellow will usually signal that your machine is still in an operational state, and all systems
are still functioning, but you need to be cautious because something could go wrong at

any time. In other words, yellow is a warning color.

Yellow is used a bit more liberally in HMIs. You can generally get away with using yellow
without confusing anyone. The only thing that you need to be mindful of is color consis-
tency. If you’re using yellow to mean warning, you don’t want to color a control a similar
shade of yellow, as that will cause confusion. Though you can be a little more liberal with

yellow than you can with red, it is advisable to use this color sparingly as well.

Chapter 14 361

e Green: Green means go. The color green as an indicator means everything is running and
working as intended and operating within its intended operational limits. Generally, green
can be used liberally as well; however, consistency also matters with this color. If you're
using green in your HMI to signify a working state, you still want to be careful when using
it for non-indicator components. Though it is common to see green controls and LEDs,
you generally want to reserve this color to indicate the following: on, working, ready, or

normal operation.

Control colors

Choosing the correct coloring for controls is a bit of an art. Many of the best-practice documents
will tell you to pick shades of gray; however, this rule is rarely followed. Most of the time, people
will select colors for controls based on aesthetics. I have personally seen controls colored in every
color of the rainbow. Usually, this isn’t a problem. The only time that color matters is when you
are using red, green, or yellow due to it possibly being confusing to the operator. However, it is
usually a good idea to make things such as buttons and controls a shade of gray, with the colors
green, red, or yellow acting as a status indicator. Regardless, no matter what color you choose,

you will want to gray out controls that are not active.

Colors are never enough on their own. Without proper labeling, no matter what color you choose,

confusion can still set in, and the only way to remove the confusion is with proper labeling.

Labeling colors

Regardless of the color that you choose, you always want to clearly state the status of the machine
on the HML. If you look at Figure 14.3, you will notice that there are no labels under the LEDs. In
this case, an operator who is not familiar with the machine may not know what each LED is sup-
posed to signify. They could assume any number of things, such as the machine is in shutdown

mode or there is a broken part.

Figure 14.3: Unlabeled LEDs

362 Layouts: Making HMIs User-Friendly

However, in Figure 14.4, the LEDs are labeled in such a way that the operator will know exactly

what they mean.
off On

Figure 14.4: Labeled LEDs

There is a lot to the art of color selection. This short tutorial is just to give you an idea of select-

ing the proper color and why it is important to label the controls, no matter what color they are.

Understanding grouping/position

Another key aspect of HMI design is grouping. Controls and readouts need to be logically grouped
so the operator can easily control the machine and take the necessary readings. When it comes

to grouping, I have seen two schools of thought. The first one is to stack the controls vertically,

as in Figure 14.5:

Figure 14.5: Vertical stacking

With the controls laid out as they are in Figure 14.5, the operator scans the controls in a top-to-
bottom motion. This configuration is known as side navigation. Normally, the side navigation is
on the left of the screen. Left navigation is considered more efficient and faster for operators. The
key to this layout is that each component gets equal weight. This means that, in theory, visually,

the bottom switch is as important as the top. There is an important caveat to this. Though each

Chapter 14 363

switch should have equal weight in this layout, people will typically default to assuming the top
switch is the most important. Therefore, when you’re designing an HMI, it’s a good idea to put

what could be considered more important controls at the top.

Left-side layouts are common for things such as selecting submenus and homing different parts.
This layout is also handy for configurations such as the one seen in Figure 14.5. Since all the con-

trols technically have the same visual weight, the operator is less likely to overlook one.

Another type of layout is where you place the controls on either the top or bottom of the screen
in a horizontal pattern. In terms of HMI development, it is common to have fields for data input
toward the top of the HMI or data entry page. Typically, data entry fields will be laid out in a
horizontal pattern at the top of the screen; however, it’s not uncommon to stack these on the side
when there are many of them. In terms of controls such as buttons, I prefer to put these along
with their indicators toward the bottom of the layout. This will typically leave the middle of the

screen reserved for data output displays. Consider Figure 14.6:

e
Hopper . ;
Parts Program Schedule

Figure 14.6: Example HMI

In the example HMI, we have four buttons to the left of the screen. In a live HMI, these would
allow us to navigate to those submenus. These are to the left so the operator can efficiently scan
them. This layout will allow the operator to navigate to the menu they need without having to

look around the screen.

364 Layouts: Making HMIs User-Friendly

Moving to the right, we can see we have three input fields labeled Parts, Program, and Schedule.
These fields are input fields. They are positioned so the operator can select their menu, then easily

scan to the right and start inputting the data for the run.

In the middle of the screen, we have a % complete bar. This bar provides pivotal information to
the operator, mainly how far along the run is. This readout is placed squarely in the center of the
screen. The reason for this is that it draws the operator’s attention. In the case of the operator
needing a readout, they simply have to look at the middle of the screen to get their data. This

reduces the extra scan time and, ultimately, makes the HMI easier to use.

At the bottom of the screen, we have four switches and LEDs. These controls will turn on L1, L2,
L3, and L4. They have an LED placed on top so the operator can easily scan to see whether the

light, and by extension process, is on.

Figure 14.6 is by no means a perfect HMI. Nonetheless, it does demonstrate some basic layout
principles. When developing an HMI, it is very important to make it as easy on the eyes as possi-
ble. In other words, you don’t want the operator to have to search for their controls or readouts.
With that in mind, let’s switch gears and talk about blinking.

Best practices for blinking

Nothing says hi-tech and advanced like blinking lights. Everyone loves blinking lights. However,
much like many other features that we have seen, blinking can be as much a curse asitcanbe a
blessing. When used properly, blinking can be used to indicate an emergency (such as an issue
that could cause harm to personnel or property), or it could mean that a job is loaded and ready

to go. In either case, blinking is distracting.

If you blink a component such as an LED, button, or popup, you need to be aware that this action
will take the operator’s attention away from the controls and put their focus on the blinking
component. For some things, such as issues or emergencies, this is what you want. However,
blinking components for the sake of it is bad. Generally, I will only blink a component under the

following conditions:

e Machine malfunctions
e Safety-related issues (open door, safety sensor tripped, etc.)

e E-stop hasbeen engaged

Chapter 14 365

For the most part, you can blink any component you want as long as it has an Invisible field, as

shown in Figure 14.7:

= Statevariables

e

Deactivate inputs

Figure 14.7: Invisible field

However, just because you can blink a component, it does not mean you should. Generally, you

should only blink components such as LEDs. On the contrary, you never want to blink one of the

following:
e Aswitch
e Abutton

e Aninputfield

e Apopup
e Anything with text

Blinking something in the preceding list can create not only an annoying situation for the op-
erator but also a potentially dangerous one. For example, if you were to blink a popup with an
error message, you could potentially make it so the operator cannot tell whether there is a safety
issue or a component failure. You could also make it difficult for the operator to acknowledge
the popup. The same can be said for something akin to a blinking switch. If the switch has to be
flipped, the blinking could interfere with the operator’s ability to do so.

In cases of popups, input fields, and so on, it is okay to have a blinking element to them. This
element might change the color of the control without disabling it, adding a blinking border, or
something along those lines. For example, if the operator needs to press a button; it is okay to
maybe have it rhythmically change colors. In the case of blinking colors, you can still get the
operator’s attention without the need to make the control hard to use. Regardless of what you
blink, you must remember to do it tastefully and ensure that it is assisting, as opposed to dis-

tracting, the operator.

366 Layouts: Making HMIs User-Friendly

Blinking a component

To blink something, you can use a series of timers, or you can use the Util library. Util is a library
packed with a lot of different function blocks. One such function block is Blink. As the name sug-

gests, the Blink function blockis an abstraction layer that can be used to easily blink a component.

To demonstrate blinking a component, the first thing we will need to do is import the Util library.
To do this, double-click Library Manager in the tree and click the Add Library button. Once you

do this, you will be met with the following screen:

String for a fulltext search...

Library Company

+ ;- Application
4" Intern

Use Cases

*
5.8

=" (Miscellaneous)

Advanced... Cancel

Figure 14.8: Library search screen

Chapter 14 367

From here, you will want to click on the expand button next to Application, and then you will

need to expand Common, as shown in Figure 14.9:

+F

String for a fulltext search...

Library Company
= - Application
= ;: Common
[!_3 Standard System

'E‘ tandarde4 System
Uil System

35 - Smart Software Solutions GmbH

Advanced... Cancel

Figure 14.9: Util library

Double-click on Util, and the library should be imported. From there, add an HMI screen to the
project and drop in an LED and switch, as in Figure 14.10:

Figure 14.10: Blinking LED HMI setup

368 Layouts: Making HMIs User-Friendly

Next, navigate to the PLC_PRG POU file and add the following variables:

PROGRAM PLC_PRG

VAR
blink : Blink;
led : BOOL;
enable : BOOL;
END_VAR

These three variables are all that are needed to blink the LED. The blink variable references the
Blink function block, the led variable will be assigned to the LED in the HMI, while enable will
be tied to the switch and will dictate whether the LED is blinking or not.

The logic to flash the LED is as follows:

blink (ENABLE:=enable, TIMELOW:=T#500MS, TIMEHIGH:=T#500MS, OUT => led);

This line of code has multiple inputs and a single output. The last argument is the output (OUT)
that will dictate whether or not the LED is on. TIMEHIGH will determine how long the LED is on,
while TIMELOW will determine how long the LED is off. Finally, enable will determine whether

the blink functionality is active or not.

To see the blink function in action, start the code and flip the switch. Observe that the LED is
blinking at a steady rhythm. The LED will be on and off for 500ms respectively, before repeating.

As stated before, you should never blink a component such as a button; however, it is common
to blink the color of the control. You'll do something like this whenever the control goes into
an error state. To demonstrate this, we are going to add a simple button to the HMI so that it

resembles Figure 14.11:

Figure 14.11: Button

Chapter 14 369

To alternate the button color, we need to set three settings, as in the following screenshot:

= Colors
+ Color B 0, 255, 64
+ Alarm color B 255,00

Figure 14.12: Button color and alarm color

In the Colors dropdown, you will see the Color and Alarm color fields. The Color field will set
the default color, similar to Figure 14.11. The Alarm color field will set the secondary color, or in
other words, the color that the button will be toggled to.

The third field that we need to set is the Toggle color field, as in Figure 14.13:

= Colorvariables
Toggle color PLC_PRG.led
Color

Alarm color

Figure 14.13: Toggle color setting

For this example, we are going to use the same code that we used to blink the LED. To alternate

the color, all thatis needed is to set the led variable in the Toggle color field.

When you run the example, observe that the button will change between red and green. You can
also use this feature to simply change the color of the button. Either way, you will set the Color,
Alarm color, and Toggle color fields in the same manner. This means that by simply setting the
Toggle color variable in the PLC logic without the blink code, you can dynamically change the

color without blinking.

Animation

A cousin to blinking is animation. It is common to have animation on HMI screens. However, much
like blinking, this must be used wisely. Animation is used quite often to simulate a processin as
close to real time as possible. This can be handy as operators can easily track the process. Much

like blinking, animation can be very distracting.

In all, blinking and animation can be used to great effect; however, both animation and blinking

must be used wisely.

Now that we have explored blinking and have touched on animation, we need to switch over to

one of the most important concepts in HMI development: screen organization.

370 Layouts: Making HMIs User-Friendly

Organizing the screen into multiple layouts

One very common, but very poor, design decision in HMI development is to group multiple dif-
ferent screen responsibilities or way too much information on a single layout. There are many

reasons why this is bad. Some reasons are as follows:

e Screen disorganization
e Cluttered appearance
e Poor usability

e Overloading the operator with irrelevant information

These are just a few reasons why screen organization is very important. Arguably, the mostimport-
ant organizational factor is overloading the operator with information. Generally, you only want
to display the information that is relevant to the operator. If you include too much information,
the operator can easily become confused, or they can tune the information out. Ultimately, they
can end up ignoring important developments. One common way to combat this is to split an HMI

application into multiple screens.

Generally, screen organization can be determined with the one-sentence rule. You usually want
to be able to describe the layout’s responsibility in one sentence without the word and. Much like
with functions or methods, if you have to use the word and, you will want to split everything after
the and into a layout of its own. HMIs that follow the one-sentence rule will generally produce

cleaner layouts that are easier for the operator to use.

In CODESYS, HMIs are broken out into what are called visualizations. Essentially, visualizations
are individual screens packaged into a single HMI. It is common to have a home screen thatis the

main entry point for the HMI, and the user can navigate to other screens from there.

Creating a visualizations screens

Adding a new screen is quite simple in CODESYS:

1. You simply right-click on the Application manager, then select Add Object, and, finally,

select Visualization..., as in Figure 14.14:

Chapter 14

371

“ - JE1 3Slicense = 3

Cut

Copy
Paste

Delete
Refactoring
Properties...

Add Object

Add Folder...

Edit Object

Edit Object With...

Login

Delete application from device

Messages ... 'v

Descrption

0 F‘msnif-‘hddes

—_—

okt

" x
)

ePEEAER I OBESL PG ROR

RAD

e

Alarm Configuration...
Application...

Axis Group...

Cam table...

CNC program...

CNC cettings...
Communication Manager..,
Data Sources Manager...
DUT...

External File...

Global Variable List...
Image Poel...

Interface...

Metwork Variable List (Receiver)...
Metwork Variable List (Sender)...

Persistent Vanables...

POU...

POU for Implicit Checks...
Recipe Manager...
Redundancy Configuration...
Symbaol Configuration...

Text List.

Trace...

Trend Recording Manager...

Unit Conversion...

Lastbuld: @ 0 @ 0 Precomple -E Visualization...

Figure 14.14: Add visualization

372 Layouts: Making HMIs User-Friendly

Once you complete this step, you should be met with a screen similar to what is shown

in the following screenshot:

EE | Creates a visualization object

Name:
Visualization

| Add Cancel

Figure 14.15: Add Visualization screen

2. In the case of this example, we are going to name the screen pumps. Hence, change the

name to pumps and click Add.

Once you have followed these steps, the new HMI screen will be added to the project. An example
of this can be seen in Figure 14.16. By default, the first screen thatis added to the project, which is
the one thatis generated with Visualization Manager, will be the first screen that appears when
the HMI is run. It is common to make this default screen the landing screen—or, as it is most

often called in automation, the home screen.

Chapter 14 373

=) Application
ﬂi] Library Manager
[5) pLc_PrG (PRG)
= (@ Task Configuration
= & MainTask (IEC-T
@] PLC_PRG
= & VISU_TASK (IEC
@ VisuElems. Vi
= El Visualization Manage
E TargetVisu
& webvisu
& Lep
&) pumps

Figure 14.16: The pumps screen added to the HMI

Figure 14.16 shows that a new screen has been added to the project tree. As it stands right now, the
screen is blank, and even if we did add something to it, it would never load. As stated before, by
default, the screen that is generated with Visualization Manager is the default screen that will
be loaded when the program runs. Usually, this is fine, as the default screen will simply serve as
the program’s home screen; however, there are times when we need to change the default screen.

The following section will be dedicated to setting the default screen when the program loads.

Changing the default screen

Luckily, changing the default HMI view in CODESYS is simple. To demonstrate this concept,

follow these steps:

1. Ensurethatthereisavisualization manager attached to your project. If you have an HMI
already set up, you should have a visualization manager. Regardless, once configured, add

the following controls to it:

Figure 14.17: Visualization screen

374 Layouts: Making HMIs User-Friendly

2. Now, add another screen called V2 and add the following controls to the layout:

Figure 14.18: V2 screen

When you run the application, you’ll see the Visualization screen by default.

3. Ifyouwantthe V2 screen to load, all you need to do is click on Visualization Manager and

navigate to the TargetVisu tab. The option to set the right screen as the default resides
in that tab.

Chapter 14 375

e} ‘E Visualization Manager X | f ﬁ WebVisu ;E LED m Library Manager @ _pumps 1@ Visualization |E -

settings @] Dialog Settings (] Default Hotkeys) Visuslizations @ User Management *) Font Settings

General Settings Additional Settings
[T Use unicodestrings (] Multitouch handling
[[J Use CurrentVisu variable @ Semi-transparent drawing
8 Support dient animations and overlay of native elements [T standard keyboard handling
. Paint disabled elements grayed out
Style Settings
Selected style Basic style, 3.5.16.0 (35-Smart Software Solutions GmbH) v # TR

Program or function call, e.g. Visulnit();

[Display all versions (for experts only)

Preview . — .
Button | ~ [Headline Ahenced
— (] visible
Radiobutton |
S @ B ——
S

Radiobuttan

[NGER T IINGER T RINDE] |

] =

Figure 14.19: Visualization Manager

4. Onceyou click on the tab, you should see a screen similar to what is in Figure 14.20. If you
study that figure, you will see a button with three dots in the Start visualization row. To
select the right screen, click on that button and you will see a selection menu. Select the

screen that you need to run at startup.

Start visualization Visualization

Update rate (ms) 200

ShowUsed Visualizations

Scaling Options
© Fixed (O Isatropic (O Anisotropic
Client width 2000
Client height 2000
Presentation Options

B Antialiased drawing

Default Text Input
Input with Keyboard v

Figure 14.20: Visualization selection

376 Layouts: Making HMIs User-Friendly

5. For this example, change the screen to V2 and run the program. Run the program as nor-
mal, and you should see that you are met with what is shown in Figure 14.18 as opposed

to Figure 14.17.

It is hard to get the full effect of this feature using a simulated PLC environment as we’re doing
here. You can simply click on the HMI screen you want to view and, with modern versions of the
development environment, that screen will load. You will typically need an actual HMI device to

see the full benefits of this feature.

In normal HMI development, you will need to navigate between screens quite often. As it stands
right now, we cannot do that, and we are only able to choose the startup screen. After you run

this example, we are going to explore the process of screen navigation.

Navigating between screens

Usually, you will navigate between screens using buttons; therefore, this tutorial will consist of

a series of buttons that will enable our navigation features:

1. Add the following layout to your default Visualization screen:

Change Screens

Figure 14.21: Default layout

2. Next, add three visualizations called V1, V2, and V3 to the project. For demonstration
purposes, simply add a button called Home on each of the screens, as well as a label to

signify the layout, as in Figure 14.22:

v2

Figure 14.22: V2 HMI

3. Wenow need to configure the button to navigate to the right screen. There are many ways
to do this, but the easiest, in my opinion, is to set up the navigation as a button click. The

first set of buttons we’re going to configure will be the button on the home screen. To do

Chapter 14 377

this, double-click the button, enable Advanced at the top of the properties menu, and scroll
down to Input configuration, and then click the OnMouseClick field, as in Figure 14.23:

= Input configuration
OnDialogClosed Configure...
+ OnMouseClick Configure...
OnMouseDown Configure...
OnMouseEnter Configure...
OnMouseLeave Configure...
OnMouseMove Configure...
OnMouselp Configure...

+ Tnnnala

Figure 14.23: Button menu

4. Once you click on that, you should be met with what is shown in Figure 14.24. Click on
Change Shown Visualization and double-click the button with three dots next to the
Assign field. You will be met with another window; select the corresponding visualization

for the button you are working on.

nput Configuration X

P Close Dialog F# Change Shown Visualization
Open Dialog

$ Change Language
£ Change Shown Visualization Selection
£ Execute Command O Assign:
F Switch Frame Visualization
* Write variable

F Execute ST-Code () Assignexpression:
“p Toggle Variable 5
7 File Transfer

Zoomto visualization

(O Previous shownvisualization

() Next shown visualization

Figure 14.24: OnMouseClick

378 Layouts: Making HMIs User-Friendly

5. Once these steps are complete, you can set the button in the V1, V2, and V3 screens to
the default screen. After you run the program, press the button on the default screen and

notice how it will switch between the different layouts.

Sometimes adding extra layouts can be overkill. Depending on the functionality and the com-

plexity of the HMI, a common technique is to simply hide components.

Hiding components

Though it is very easy to navigate between screens, many HMI developers will typically hide
components as an easy means of organization and security. For example, suppose there is a cali-
bration button on the HMI that only the technicians and other authorized personnel should have
access to. A control like this would normally be hidden behind a passcode control mechanism.
That is, the user would have to enter a password to access the button. From there, the button
would appear on the screen; when the button is pressed, other fields, such as calibration menus,
would appear on the layout. In CODESYS, and many other platforms, this is typically done by

making the controls invisible.

By making the controls invisible, you’re also rendering them inactive. This means thatif you have
a button that you make invisible, you won’t be able to press it while the button is hidden. This
technique essentially allows you to create different screens without needing extra layouts. This
methodology can and usually does make the system difficult to maintain; however, for cheaper

and less powerful systems, it may be the only option to give the illusion of multiple layouts.

For the Visu tool in CODESYS, most control elements can be made visible or invisible with a
simple BOOL variable in the Invisible field.

= Statewvariables

Invisible

Figure 14.25: State variable

By setting this field to TRUE, the control element will become invisible and inactive. Conversely,
by toggling the value to FALSE, the element will become visible and enabled. For simple HMIs,

this is an excellent mechanism to control the layout of your touchscreen.

Note

\E/‘ Most systems will have some type of method to render controls invisible. However,

the way it works and the setup will vary from system to system.

Chapter 14 379

Final project: Creating a user-friendly carwash HMI

One application for HMIs is carwashes. Carwashes are excellent use cases for PLCs in general, and
when you think of how a modern carwash works, they’re also a great use case for HMIs. In this

scenario, we’re going to create an HMI for a kiosk that controls a self-service carwash.

HMI goals

Creating an HMI for anything that’s meant to be used by the public can be tricky. On one hand,
the HMI needs to be able to absorb all the information needed for the application to function;
however, at the same time, it needs to be easy enough for anyone to use. From a purely economic
point of view, if the HMI is too hard to use, potential customers will go elsewhere, which means
aloss of revenue for your business. Therefore, itis important to have a very simple interface that

anyone can use.

For this carwash, any user who signs up will get a secret code, in this case, 123. Once the user logs
in, an LED will turn on, and the user can select which wash they want. For this application, we
need a simple interface that allows the user to press a button to select their wash. Also, we need
authorized personnel to be able to log in to the device and perform tasks such as calibrating the
carwash. This means that we need hidden controls or extra HMI layouts. Due to the simplicity of
this application, it will probably be easier to simply hide controls as opposed to making a whole

new screen. Therefore, let’s start setting up the code.

PLC code

To begin, we’re going to need the following variables,

PROGRAM PLC_PRG

VAR
led : BOOL;
num . INT;
admin : BOOL := FALSE;
basicWash : BOOL;
deepWash : BOOL;
bestWash : BOOL;
END_VAR

In this case, the admin variable will make the admin controls visible, the led variable will turn

on an LED, and num will hold the value inputted from the built-in keypad.

380 Layouts: Making HMIs User-Friendly

The main logic for this code will look like the following:

IF num = 123 THEN
led := TRUE;
admin := FALSE;

ELSIF num = 111 THEN
admin := TRUE;

led := FALSE;
ELSE

led := FALSE;

admin := FALSE;
END_IF

The screen mode is dictated by the number the user enters. If they enter 123, they will be able to
wash their car; however, if they enter 111, they will be able to use more advanced maintenance

controls. With the code laid out, we can now move on to the actual HMI layout.

HMI layout

To begin, lay out the HMI to match the following:

User Login Basic Wash Deep Wash BestWash

- 8 000

Basic Wash

Deep Wash

Best Wash

Calibrate

Figure 14.26: HMI layout

Chapter 14

381

&

Note

For drag-and-drop systems, you can sometimes skip wireframing. These systems
make it easy to move controls around on a whim, which can make wireframing

redundant.

In this case, we have a text field, the white box in the top-left corner, which will open up a number

pad. The configuration for this control will match Figure 14.27:

Properties
¥ Filter =

¥ Sort by - %lSOrt order Advanced

Property
A
Width
Height
Colors

F

F

Element look
Shadow type
Texts

Text

Tooltip
Text properties
Text variables
Dynamic texts
Fontvariables

F

+

F

F

F

Colorvariables
Blinking

F

+

Value
50
150
30

From style

User Login

Statevariables

Selection and caret...

F

F

Center

F

Absolute movement
Animation duration
EBring to foreground
Input configuration

OnDialogClosed
OnMouseClick
Write Varia...

OnMouseDown
OnMouseEnter
OnMouseleave
OnMouseMave
OnMouseUp
OnvalueChanged

+ Toggle

+ Tap

+ Hotkey

Configure...

Configure. ..

*% Variable : PLC_PRG.num, InputType : VisuDialogs.Numpad, Min :, Max: , DialogTitle : , Use text outputvariable: False, Format :

Configure...
Configure...
Configure...
Configure. ..
Configure...

Configure...

Figure 14.27: Text field configuration

382 Layouts: Making HMIs User-Friendly

Once you have the control on the screen, double-click it and navigate to the Input Configura-
tion property. For this one, we want to set OnMouseClick, as can be seen in Figure 14.27. Once

you’re there, click on the button with three dots and set up the popup to match what is shown

in Figure 14.28:
nput Configuration
Close Dialog *$ Write Variable
Open Dialog
Change Language Input type
Change Shown Visualization isuDialogs.Numpad I
7 Execute Command Choose Variable to Edit
F switch Frame Visualization _
% \yrite Variable () Use text output variable
F Execute ST-Code © Use another variable
*% Toggle Variable = PLC_PRG.num
F File Transfer
P Initial display format
Min value
Max value
Dialogtitle

() Passwaord field
Position to Open Input Dialog
(C) Use global setting (from Visualization manage
© Centered

() Position

Figure 14.28: Numpad configuration

In terms of the user login LED, set the properties to match Figure 14.28. The only setup that is
required is to set the Variable property to PLC_PRG. led and Image at the bottom to Yellow.

Chapter 14

383

Property
Element name
Type of element
= Position
X
Y
Width
Height
Variable
= Imagesettings
Transparent
Transparent color
Isotropic type
Horizontal alignment
Vertical alignment
= Texts
Tooltip
= Statevariables
Invisible
= Center
X
Y
= Absolute movement
= Movement
X
Y
Rotation
Scaling
Interior rotation
Animation duration
Bring to foreground
= Background

Image

Value

GenElemInst_9
Lamp

250
73
70
70
PLC_PRG.led

I Glack
Isotropic

Left
Top

535
45

Yelow

Figure 14.29: User LED setup

The wash LEDs should be configured like the following:

Property
Element name
Type of element
= Position
X
¥
Width
Height
Variable

Value

GenElemInst_17

Lamp

373

73

70

iV}
PLC_PRG.basicWash

Figure 14.30: LED configuration

For each of these, set the Visible field to match their respective variable and set the color to green

using the Image field as in Figure 14.29.

384 Layouts: Making HMIs User-Friendly

The placeholder box, calibrate button, and pots should have their Invisible field set to match

what is shown in Figure 14.31.

- Statevariables
Invisible MOT PLC_PRG.admin

Figure 14.31: Maintenance controls

The wash buttons are going to be a bit trickier to set up. For these buttons, we’re going to set
their Invisible field to NOT PLC_PRG. led and we’re also going to configure them to run a small ST
script. To do this, we need to navigate to OnMouseClick and add Execute ST-Code as an event.

This will give us a small box to write the script in, like the following:

Input Configuration X

OnMouseClick

Close Dial # Execute ST-Code
e Execute ST-Code

£ Open Dialog
&= Change Language 1 PFLC_PRG.basicWash := TRUE;
Change Shown Visualization 2/ PLC_PRG.bestWash := FRLSE;
F Execute Command 3 FLC_PRG.deepWash := FRLSE;
Switch Frame Visualization
*p write Variable
Execute ST-Code
* Toggle variable -
File Transfer —

<

100 % |&R)

oK Cancel

Figure 14.32: ST script

This feature allows us to write custom code and manipulate any globally available variable. This

is a very powerful feature and is very handy for buttons like these.

Chapter 14 385

The code for the basic wash button can be viewed in Figure 14.32. However, the code for the deep

wash button should match the following snippet:

PLC_PRG.basicWash := FALSE;
PLC_PRG.bestWash := FALSE;
PLC_PRG.deepWash TRUE;

The code for the best wash button should be as follows:

PLC_PRG.basicWash := FALSE;
PLC_PRG.bestWash TRUE;
PLC_PRG.deepWash := FALSE;

These scripts will essentially turn on the LED for the corresponding wash while turning off any

other LED thatis on.
At this point, the code and HMI are set up, and we can now test!

To begin running the project, you should start at the screen shown in Figure 14.33:

User Login Basic Wash Deep Wash Best Wash

- e eee

Figure 14.33: HMI startup

As can be seen, in our startup mode, all we have are the wash and user login LEDs, as well as the

User Login field. From here, click the User Login field, and the number pad should appear.

\G/\/ Note

The number pad may appear off-screen. You may have to search for it!

386 Layouts: Making HMIs User-Friendly

On the number pad, enter 123 and press the OK button. When the operation is complete, you
should be met with what is shown in Figure 14.34:

User Login Basic Wash Deep Wash Best Wash

- 0 eee

—
Basic YWash |
Deep Wash l

r Best Wash |

Figure 14.34: User HMI view

You should be able to click on a wash button and watch the corresponding LED light up while
the others turn off.

Next, click User Login again and enter 111 on the keypad. Follow this up by pressing the OK
button. When you do this, you should be met by what is shown in Figure 14.35:

User Login Basic Wash Deep Wash Best Wash

- © 00

Calibrate

Figure 14.35: Admin panel

Notice that the wash buttons vanish as expected. Also, notice that an LED is on. The LED may
not be on when you enter this mode. The reason why the LED is on in the screenshot is because
Best Wash was selected when this mode was entered. If you have a wash selected while you enter

this mode, the wash’s LED will stay on.

Chapter 14 387

Now, we can give ourselves a pat on the back because we created a working carwash HMI. The

next thing to do is make it better!

Improvement challenges

Try to implement the following improvements to the PLC/HMI program:

e Clear the wash modes when the user is changed.
e Usealoop tolock the HMI out when the user inputs an invalid code more than three times.
e Break out the admin mode into its own screen.

e Add an emergency stop button.

Summary

Creating HMI panels is as much an art as it is a science. You need to ensure the colors are correct,
the controls are logically laid out, and so on. In this chapter, we explored many of the basic prin-
ciples of creating multiple windows, laying out switches, configuring LEDs, and more. We also
learned how to hide certain controls when it is convenient for us. Visu is a great tool to create
basic HMIs such as the one we created here. However, it can be used for more than simple controls.
Visu can also be used to alert the operator to dangerous situations. In the next chapter, we're

going to explore how to set up and use alarms!

Questions

1. Whatdo the colors red, green, and yellow typically represent?
What color backgrounds should you primarily use?
How many responsibilities should each HMI screen have?

What should your default screen be?

A

How do you make a control invisible?

Further reading

e Standard colors on HMI: https://www.mesta-automation.com/standard-colors-on-hmi/

e Design Tips to Create a More Effective HMI: https://blog.isa.org/design-tips-
effective-industrial-machine-process-automation-h

https://www.mesta-automation.com/standard-colors-on-hmi/
https://blog.isa.org/design-tips-effective-industrial-machine-process-automation-h
https://blog.isa.org/design-tips-effective-industrial-machine-process-automation-h

388 Layouts: Making HMIs User-Friendly

Join our community on Discord

Join our community’s Discord space for discussions with the authors and other readers:
https://packt.link/embeddedsystems

https://packt.link/embeddedsystems

15

Alarms: Avoiding Catastrophic
Issues with Alarms

In many SCADA and HMI systems, alarms are dedicated controls that are specifically designed
to warn operators about the status of the machine. Normally, alarms will allow you to change
colors, display text, log issues, and more. Each HMI or SCADA package that offers alarms will offer
different alarm types, styles, functionality, and more; however, the core principles that govern

most alarms are universal.

Much like HMIs, developing and properly implementing an alarm is as much an art as itis a
science. This chapter is dedicated to implementing alarms logically and effectively. To do so, we

are going to explore the following concepts:

e What are alarms?
e Where to use alarms
e Alarm configuration: info, warning, and error setup
e Alarm HMI components
e Alarm PLC code
e How to acknowledge alarms
Alarms for motors are very common as the devices can easily overheat, draw too much current,

or have other issues that need to be logged or reported. After exploring alarm concepts, we are

going to round out the chapter by creating an alarm for a motor.

390 Alarms: Avoiding Catastrophic Issues with Alarms

Technical requirements

As per every other chapter in the book, a full version of CODESYS will need to be installed. The
visualization tool will need to be installed as well. As usual, the examples can be downloaded
from the following URL: https://github.com/PacktPublishing/Mastering-PLC-Programming-
Second-Edition/tree/main/Chapter%2015.

What are alarms?

Alarms in automation programming are designed to get the operator’s attention and alert them
to some type of situation. The most common type of alarm is meant to alert operators to a safety
issue; however, they can also be used to warn of a machine malfunction. The goal of an alarm is

to prevent harm to a device, machine, or, more importantly, a person.

In automation programming, an alarm will usually consist of an HMI component, PLC code, and
sometimes physical hardware. Though not every machine will use hardware with their alarms,

some common physical components used in conjunction with software are as follows:

e LED strobes
e Lamp strobes
e Loudbuzzers

e Speakers that play prerecorded messages

Though technically not an alarm, I like to count things such as automatic locks in this category.
This is because they are a safety mechanism that can get an operator’s attention under the right

circumstances and prevent damage or harm.

In terms of the HMI, many systems support alarm components that are specifically designed to
give warning and error messages. However, as an HMI developer, you are not restricted to these
components alone. It is not uncommon to use things such as blinking lights, pop-up boxes, and
more for alarms. In fact, it is quite common, especially in systems that don’t have alarm elements,

to use things such as the following:
e Digital LEDs that blink
e Gauges
e Textfields that change colors
e Popups

. Buttons

https://github.com/PacktPublishing/Mastering-PLC-Programming-Second-Edition/tree/main/Chapter%2015
https://github.com/PacktPublishing/Mastering-PLC-Programming-Second-Edition/tree/main/Chapter%2015

Chapter 15 391

For weaker development systems, a common technique for an alarm is to make a very large but-
ton invisible and set the button’s text dynamically. When the alarm is triggered, the code can be
rigged to make the button visible with a message indicating the status of the machine. This makes

it very easy for the operator to acknowledge the alert by simply tapping the popup.

When should you use an alarm?

Much like with anything else, picking when and where to use an alarm is often up to the dis-
cretion of the developer. Not all alarms have to warn of danger; however, if danger or damage
could result from the condition, it is absolutely necessary to implement one. Typically, common

applications for alarms are as follows:

e E-stops

e Out-of-range values such as voltage or temperature
e Networkissues

e Cybersecurity issues (hackers/unauthorized users)
e Misbehaving electrical components

e Parts that are damaged or nearing their end of life

e Warnings for fire, gas pollution, or some other dangerous conditions

Cybersecurity alarms

The machine or environment will dictate what type of alarm you need. Though not as common
as alerts for things such as out-of-range components, with the rise of Industry 4.0 and the net-
worked machines that it supports, alarms for cybersecurity are becoming a major factor in the
development of a machine/network. For networked systems such as SCADA systems, itis advisable
to dedicate some alarms to warn of intruders. For this type of application, the core alarm would
typically live in some type of custom system and not necessarily the machine’s HMI or PLC code.
However, with the proper networking, external software, and PLC coding, one can easily rig the
PLC to receive a warning and pass that on to an HMI for the operator to see. This is advisable for

networked machines that can inflict major damage or bodily injury.

In terms of cybersecurity, there are many third-party security/monitoring systems that can be
installed on advanced PLCs that are powered by Linux, Windows, or are deployed to a centralized
computer that monitors a network. While many of these systems can usually give alerts (alarms)
to the user without interrupting the HMI operations, others can send information using some
type of network protocol, such as TCP/IP, that can be intercepted by the PLC or other computer

systems and trigger an actual alarm in the HMI.

392 Alarms: Avoiding Catastrophic Issues with Alarms

What should an alarm say?

For an alarm to be of any use, you will need the alarm to logically reflect the issue/warning at

hand. An alarm should, at a minimum, include attributes such as the following:

e Theissue that was detected
e Whether the alertis an info, a warning, or an error alarm
e Timestamp (if possible)

e Whether the alarm was acknowledged (if possible)

Most HMI systems will give you options for these four attributes. However, some alarm systems
do not give these options, especially if they are built using a traditional programming language
or weaker systems. Regardless of the options available, you want to give the operator as much
information as you can to pinpoint the cause of the message, especially if the alarm relates to a

warning Or an error message.

Logging alarms

You will usually want to log your alarms if possible. This is especially true if your system is mon-
itoring for intruders. You will log alarms when they need to be kept long-term or used for anal-
ysis. This can be easier said than done. Some systems do allow you to store the alarms in either
a database or something such as a CSV file. However, not all systems support this. This type of
behavior is more commonly associated with complex SCADA systems and HMI systems that are

built using a traditional, general-purpose programming language.

Ultimately, what your alarms need to detect, and what they should say, is going to be up to the
end user, your organization, and you. Much like HMIs, creating a decent alarm is a bit of an art.

The next step in our journey is to learn how to configure alarms.

Alarm configuration: info, warning, and error setup

To do anything with alarms, the first thing we need to do is set up an alarm configuration. An
alarm configuration is the configuration setup, such as the colors, the fonts, and so on, that will
govern the info, warning, or error alarm. In CODESYS, this is a relatively easy task. To add an
alarm configuration, you will simply need to right-click Applications and follow the path in the

following screenshot:

Chapter 15 393

=3 Untitleds -
=[] Device (CODESYS Contral Win v3)
= 20 PLc Logic
= 0 Awpi :
i . Alarm Configuration...
B2 ©» €3 Application...
o @ 1al B Paste - p.P
T &X Delte @} Axis Group..,
i @, Camtable..
Refactniing d 6 CNC program...
2 Properties... &% CNC settings...
|L_| Add Object » | (#i Communication Manager...
3 Add Folder... B® Data Sources Manager...
1" Edit Object % DUT.
Edit Object With... External File...
| & Login @ Global Variable List...
[ﬁ Global Variable List (tasklocal)...
Delete application from device Image Pool..
T =

Figure 15.1: Path to add an alarm

This will bring you to a wizard like the one in the following screenshot. In the wizard, give the
alarm configuration a name and click Add. For our alarm configuration, we will simply keep the
default name. Once you click Add, you will see the Error, Info, and Warning attributes under

Alarm Configuration in the project tree.

Add Alarm Configuration X

Creates an alarm configuration

Name
Alarm Configuration

Figure 15.2: Alarm Configuration wizard
The Info, Error, and Warning attributes that are generated can be seen in the following screenshot:

= Lﬁ Alarm Configuration
& Error
A info
2 warning
N AlarmStorage

Figure 15.3: Alarm Configuration tree

394 Alarms: Avoiding Catastrophic Issues with Alarms

For alarms that utilize Alarm Configuration, each Error, Info, or Warning alarm will be identi-
calin setup. In other words, they will have the same fonts, colors, and so on. You can technically

choose any color you want to represent each of the states. However, in keeping with tradition,
we will use the following color scheme:

e Error:red

e Warning: yellow

e Info: green

To set up the configuration attributes, you will need to click on the Error, Info, and Warning
tabs individually.

The first step is setting the configuration for each of the alarm types. You will first double-click
on them. Once you double-click any of the alarm types, you should see a configuration screen
similar to the following:

Priority [10 ry Acknowledgement

Acknowledgement method REP_ACK R This acknowledgement method has the following states and transitions:

activat deactivate confirm,
B Acknowledge separately [Normal]_e)[Active l:![w&ﬁng for conﬁrm.'—)E
R A actvate

[l Acknowledgeinstead of confirm

Archiving

Notification Actions

Action Activate Deactivate Confirm Details Deactivation

Details

Display Options for Alarm Table fAlarm Banner

|
State Font Background Color Bitmap Transparent Transparent (

Normal

Active M Microsoft Sans Serif, 9pt Il 5. 0.0 [

0
Waiting for confirmation

Figure 15.4: Error configuration menu

Chapter 15 395

For this example, click the Archiving and Acknowledge separately checkboxes. Next, navigate
to the bottom and select the font and background color. Figure 15.4 shows the configuration
that will be used for errors. You will do the same for the Info and Warning alarms, but those
backgrounds will be green and yellow, respectively. After this is complete, you will need to set

up your alarm groups.

Alarm groups

Alarm groups consume alarm configurations like the one that was just set up. To generate an alarm
group, right-click on the Alarm Configuration button, select Add Object, then Alarm Group...,

similar to what can be seen in the following screenshot:

= ﬂ Alarm Canfiauration |

B erd & Cut prom
& nf Copy Activate Deact
@ moli {8 Paste
@ Wa X Delete
I\ mot
N Aar [Properties...

@ Library l_[Add Object 3 | & Alarm Class...

{E] PLC_PR

o L Add Folder...

= @ Task Co _:l s |@ Alarmlﬁroup
=& AanJ Edit Object] TextlList...
& Edit Object With... Font

Figure 15.5: Alarm group generation

After you click Alarm Group..., you will be met with a wizard similar to the one in the following

screenshot:

Vi

Creates an alarm group

Name
AlarmGroup

Figure 15.6: Add Alarm Group wizard

396 Alarms: Avoiding Catastrophic Issues with Alarms

For our example, we are going to give the alarm group the name motor and click the Add button.

Once you do that, you should see the group appear in the tree, as in the following screenshot:

= Alarm Configuration

& Error
& Info

&% Warning

|48 motor_|

¥ AlarmStorage

Figure 15.7: Alarm Configuration group

Before you can fully set up the motor group, you will need to implement the following variables
in the PLC_PRG POU file:

PROGRAM PLC_PRG

VAR
info : BOOL := TRUE;
warn : BOOL := FALSE;
error : BOOL := FALSE;
END_VAR

In this case, we have three variables that will be responsible for showing the alarm message. Now
that those variables are set, double-click the motor alarm group. Once you click the group icon,

configure the screen similar to the following by selecting each field and adding the information

found in Figure 15.8:
ID Observation Type Details Deactiva... Class Message
g 74 Digital (PLC_PRG.error) = (TRUE) ﬁ Error There is a motor error
1 9% Digital (PLC_PRG.info) = (TRUE) 4 Info All Good!
2 54 Digital (PLC_PRG.wamn) = (TRUE) 4 warning AllNotso Good!

Figure 15.8: The motor group configuration

For our example, Observation Type will be set to Digital. Next is the Details column. This is the
logic that will fire the alarm class, and by extension, the message attached to it. This is where
the variables that we created come into play. As can be seen in Figure 15.8, the variables that we
created are used here. The next column we need to set is Class. This is essentially the alarm type

that will fire when the logic in the Details column is satisfied.

Chapter 15 397

With all that, the alarm’s configuration should be set up. However, as it stands, this is just the
core logic and configuration. For this to be useful, we need to attach it to an HMI component so

we can display our alarm on a screen.

Alarm HMI components

After we set up the alarm’s configuration, we can drop in an HMI component. In terms of COD-
ESYS, there are two types of HMI controls. One is the alarm banner, and the other is the alarm

table. Consider the following:

e Banner: A banner shows one message at a time. It will prioritize alarms and only show
the Error, Warning, or Info alarm, in that order, unless configured otherwise. In other
words, a banner will display the most important alarm first. No matter the type of alarm,

the alarm can be toggled by toggling the variable in the alarm group.

e Table: An alarm table will show active alarms for an alarm group. New alarms will show
at the top of the table and can be toggled by toggling the variable they are tied to. Where
banners are meant to be on every HMI screen, tables are usually set on a diagnostic screen.
Compared to banners, a table can give more information as it will show more alarms, but

itis usually tied to an exclusive screen.

A banner is arguably the most important part of an alarm, as it will allow you to see the most
important information, while a table is similar to a log. Essentially, outside of the attention-get-
ting gimmicks such as blinking lights and loud sounds, this will be the first point of contact to
determine what’s triggering the abnormal behavior. Therefore, these messages need to be very
clear and concise. Depending on what system you’re working with, you can prioritize your alarms

to show the most vital ones first.

Where a banner will show only one alarm message, the table, on the other hand, can show the
other alarms. In other words, the table is a more comprehensive component that shows a more
detailed picture of what’s going on in the machine. For example, a banner might read that the
system is overheating. This is indeed an important clue, but it is very unlikely that the operator
will be able to determine the root cause of the problem with that message alone. However, by
reading the table, the operator can skim the other alarms and be warned of other situations, and

get a better idea of the root cause of the problem.

398 Alarms: Avoiding Catastrophic Issues with Alarms

Note

\@/ When possible, set alarms for things that could result in injury or death as the
highest priority!

Depending on the design, HMI table inclusion will vary. However, at the very minimum, you're
going to add a banner. The banner should be at the very top of each HMI screen, and it should
be in a place where the operator can easily see it. Usually, you’ll want to place the banner in the

center at the top, as follows:

Timestamp Message

Controls area

Figure 15.9: Mock layout

The preceding layout shows the alert bar at the top of the screen. Under the bar is the control area.

Setting up an alarm banner

To set up the bar, firstly, we will need to set up the alarm configuration. For this example, we will
use the same value that we set up in Alarm Configuration. After that step is complete, you will

want to set up the following variables in the PLC_PRG POU file:

PROGRAM PLC_PRG

VAR
info : BOOL := TRUE;
warn : BOOL := FALSE;
error : BOOL := FALSE;
ack : BOOL;

END_VAR

Chapter 15 399

This example will use four variables. The info, warn, and error variables will display the asso-
ciated alarm when they are set to TRUE. The last variable, ack, will serve as the acknowledgment
variable. The mechanics of acknowledging alarms are something we’ll explore later; for now, just

keep it as a placeholder.

Once the variables are set, the next thing to do is add an HMI screen to the project and add a

banner to it. Keep the banner’s parameters to the default settings and run the code.

Note

\/V By default, banners will read from all the alarm groups. If you have more groups, the
banner will pick up those alerts too. You can customize this setting by changing the

Alarms Group property under Alarm Configuration.

This code configuration should result in Figure 15.10:

Controls area

pression Type Prepared value Address
@ info BOOL E
@ warn BOOL
& eror BOOL
ack BOOL

Figure 15.10: Info alert

400 Alarms: Avoiding Catastrophic Issues with Alarms

To explore the other alarms, set the info variable to FALSE then set one of the other variables
to TRUE and observe the banner. If all goes well, you should see the banner color along with the

message change.
With a working banner example under our belt, we can now turn our attention to setting up

alarm tables.

Setting up an alarm table

Aswe explored, an alarm table is a layout that will show multiple alarms. An example of an alarm

table is shown in the following screenshot:

[:L_Timestamp v | Ei_e_sia_ge

(=1

WM s

Figure 15.11: Alarm table

As can be seen, the alarm table is split into rows and columns. The table will autogenerate a
Timestamp column and a Message column; however, you will have the option of adding extra
columns as you see fit. This ability is available for the banner as well. For this example, we’re

going to keep it simple and only use the Timestamp and Message columns.

Where and how you use the alarm table is ultimately up to you; however, I prefer to create a spe-
cialized HMI screen for alarms and diagnostic purposes. In other words, I like to put alarm tables
on maintenance screens that are used to display diagnostic information. Due to the nature of the
table, I feel that these types of controls are best used on diagnostic-oriented screens to make it
easier to locate issues that may arise in the system. However, that is a personal preference, and

you may find it more suitable to go another route.

In terms of placement, since an alarm table is larger than a banner, I usually like to place these
toward the middle of the HMI screen or off to one of the sides. Again, this placementis a personal
preference. Regardless, due to the size of the table, it can easily look out of place depending on

where you place it.

Chapter 15 401

Setting up an alarm table is very similar to setting up an alarm banner. To use an alarm table,
you’ll have to create an alarm configuration and add it to the alarm table setup. To properly set

up the alarm table, your settings should match the following:

= Alarm configuration

Alarm groups @ All
Priority from 0
Priority to 255
Alarm dasses VoYl

Figure 15.12: Alarm table configuration settings

For the alarm configuration and code, we can simply reuse everything from the banner example.
For this example, we will remove the banner and simply place an alarm table on the screen. In
short, all that is required for this example is to remove the banner and replace it with an alarm

table. Once the program is running, set all the variables to TRUE, as in the following screenshot:

Prepared value Addras

Expression Type
info BOOL d
$ wamn BOOL
@ error BOOL

Figure 15.13: PLC variables

As seen in Figure 15.14, all the alarms are being shown at once, which is the expected behavior.

Timestamp ~ | Message
24 09.2022 23:06:23 All Not so Good!

Figure 15.14: Alarm table output

402 Alarms: Avoiding Catastrophic Issues with Alarms

Alarms can be removed from the table by simply turning them off. In other words, setting the

TRUE variable to FALSE will remove the alarm from the table.

PLC_PRG

Device.Application.PLC_PRG

Expression Type Value Prepared value Addres
info BOOL E
$ warn BOOL
§ error BOOL

Figure 15.15: The info variable set to FALSE

Once you've done this, consider the following screenshot. As you can see, the info alarm is now

gone.

Timestamp = | WMessage]

24092022 23.06:23 All Not so Good!

Figure 15.16: The info alarm removed

The preceding figure shows what happens when the variable that is tied to the alarm is turned
off. Put simply, the alarm is removed from the table. To reverse this, you can turn the alarm back

on by simply toggling the variable back to TRUE.

Alarm tables such as the one we’re exploring in CODESYS can be a bit tricky to use. As we saw,
setting a variable to FALSE essentially auto-acknowledged the alarm. As we will explore in the
Alarm acknowledgement section, this can be bad, as the alarm may be cleared before an operator
has a chance to read it. If there is a borderline part in the system, this could lead to a dangerous
situation. As such, I recommend implementing PLC logic that will prevent the variables from

automatically resetting themselves to FALSE without operator involvement.

So far, this chapter has been dedicated to setting up controls to display alarms on the HMI. How-
ever, we have only touched on the PLC logic. As we saw, triggering an alarm is usually as simple
as setting a Boolean variable to TRUE or FALSE. In the next section, we’re going to take a closer
look at the PLC side.

Chapter 15 403

PLC alarm logic

There is nothing fancy or complex about triggering an alarm. As we have seen, all we have to do
is set a variable to TRUE or FALSE. However, understanding when to set the variable to the correct
state can be tricky. For most things in automation, we use bounds or operating ranges to deter-
mine whether the partis in a healthy state or not. In other words, many things, such as heaters,
motors, and so on, have an optimal operating range that they should always be in. Straying from
the optimal range can easily affect the performance of the machine. Typically, alarms will be set
when certain aspects of the machine begin operating outside of their optimal ranges, especially

when those ranges can lead to injury to personnel or damage to the machine.

Though itis common to hardcode range values, it is usually better to set alarm bounds on some-
thing akin to an HMI calibration screen. An HMI screen will allow technicians to alter alarm
parameters without needing to modify code. Hence, our examples are going to have an accom-

panying HMI.

For this example, we are going to simulate a series of pumps. We are going to set up an operating
range that looks like the following:

e Normal: 0-50 PSI

e Approaching limit: 50-75 PSI

e Over limit: >75 PSI
The banner colors for this example will be as follows:

e Normal range: Green
e Approaching limit: Yellow

e Over limit: Red

The key to doing this will be the logic in the PLC code. To implement this program, we are going
to use the following variables in the PLC_PRG file:

PROGRAM PLC_PRG

VAR
info : BOOL := FALSE;
warn : BOOL := FALSE;
error : BOOL := FALSE;

404 Alarms: Avoiding Catastrophic Issues with Alarms

info_pump : BOOL := FALSE;
FALSE;
FALSE;

warn_pump : BOOL
error_pump : BOOL

good_range : INT;
warn_range : INT;

error_range : INT;

psi : INT;
ack : BOOL;
END_VAR

In this example, we are turning the alarms, including the info alarms, off by default.

Below the alarm variables are the range variables. These are the variables that will be tied to an
HMI control. As the name suggests, these are the variables that will be used to set the good, warn,

and error range, which will be tested against the psi variable.

A minimalist PLC program for this setup is as follows:

info_pump := (psi < warn_range);
warn_pump := (psi >= warn_range AND psi <= error_range);
error_pump := (psi > error_range);

For this example, we are going to add a new alarm configuration to give the appropriate message.

In this case, we are going to add a new alarm group called pumps and configure it to match the

following:
D Observation Type Details Deactiva... Class Message
0 24 Digital (PLC_PRG.info_pump) = (TRUE) anfu PSI Optimal
21 Digital (PLC_PRG.warn_pump) = (TRUE) &Wamfng PSI Approching Upperlimit
2 24 Digital (PLC_PRG.error_pump) = (TRUE) 4\ Error PSI Over Range

Figure 15.17: Pump alarm group

Chapter 15 405

After adding the new alarm group, the Alarm Configuration tree should look like the following
figure:

= Alarm Configuration

& Error
fﬁ Info
.ﬁ Warning
& pumps

@ AlarmStorage
pumps

Figure 15.18: Alarm Configuration tree

We will use the following layout for the HMI:

Timestamp | Message

n Operating

D Warning
_| |— Error

PSI Control

Figure 15.19: HMI layout

The HMI will allow us to set our limits via the sliders on the left of the screen. The variables will

be assigned with the following pattern:

e Operating: good_range
e Warning: warn_range
e Error:error_range
The PSI Control pot will be attached to the PSIvariable, as will the gauge. The gauge will be used

to view the simulated PSI reading that is set with the pot. Finally, we are going to use the top

alarm banner to display the alarms.

406 Alarms: Avoiding Catastrophic Issues with Alarms

The next thing we need to do is set the scales on the sliders. We are going to set the Operating

slider to what is shown in the following screenshot:

= Scale
Show scale
Scale start 0
Scale end 50

Figure 15.20: Operating slider scale

The Warning slider’s scale values are depicted in Figure 15.21:

= Scale
Show scale
Scale start 51
Scale end 75

Figure 15.21: Warning slider scale

Lastly, the scale for the Error slider can be seen in Figure 15.22:

= Scale
Show scale
Scale start 76
Scale end 100

Figure 15.22: Error slider scale

Next, we're going to set the pot. Since our scales are going to max out at 100 PSI, we’re going to
set the scale end to 120. We’re going to do this just to give it some extra space for the error alarm.

You will need to match the scale on the pot to the values shown in the following screenshot:

= Scale
Subscale position Inside
Scale type Lines
Scale start 0
Scale end 120

Figure 15.23: Pot scale

We’re going to set the scale on the gauge to match the pot; that is, Scale end will be set to 120.

We'll set the scale on the gauge the same way we have set the scale on every other HMI component.

Chapter 15 407

Lastly, we need to set up the alarm banner. If you have not set up the alarm configuration for this
example, you will need to do that now. You can use the same color schemes and fonts we used

throughout this chapter.

After all these components are configured, you can run the program. Once you run the program,
you’ll want to set all the slides to the right of the screen, as shown in the following screenshot.

Once you do that, you will see the banner turn green.

D Operating

——{] Waring
—]

Figure 15.24: Green banner

Once the program is running, slowly rotate the pot to the right. Notice that once you get past 80

PSI, the banner will turn yellow:

12122025 21:47: | Approaching Upperlimit

Operating

Warning

Figure 15.25: Yellow banner

408 Alarms: Avoiding Catastrophic Issues with Alarms

Finally, if you max out the pot, you will see the banner turn red.

e

_u Operating

—I I Warning
—

Figure 15.26: Red banner

In areal-world application, the data that dictates which banner to show will most likely be fed in
by a sensor of some type. Generally, alarms need to be dynamic and read data. Nonetheless, you
will most likely always use some type of input, such as sliders, to set the limits. Depending on
what you’re working on, it may be easier to trigger the alarms via the configuration in the Alarm
Configuration menu as opposed to custom PLC logic. For our example, we triggered the alarm
programmatically, which is acceptable in many cases; however, it is important to explore using
the GUI as well. Consider the following screenshot:

D Observation Type Details Deactivation Class
0 24 Digital (PLC_PRG.info_pump) = (TRUE) J Info

74 Digital (PLC_PRG.warn_pump) = (TRUE) @Waming
2 [+ Upper limit PLC_PRG.psi > PLC_PRG.error_range @\ Error
Upper limit
Expression PLC_PRG.psi > \. PLC_PRG.error_range

Hysteresis in%

Figure 15.27: Setting error limit via alarm configuration

Essentially, this will set the Upper limit logic statement for the alarm to trigger; however, using
this methodology can be somewhat restrictive if you need to perform machine operations, such
as a machine shutdown. For simply triggering an alarm, the GUI configuration works fine, but if

more complex operations are needed, it’s best to use PLC code. With all that said, the next thing

we need to look at is alarm acknowledgment.

Chapter 15 409

Alarm acknowledgment

Conceptually, you can think of alarm acknowledgment as a signature. Similar to the way racecar
drivers are typically required to sign a legal waiver before a race, acknowledging that they could
get hurt, an operator acknowledging an alarm is them confirming to the machine that they un-
derstand there is some type of abnormal situation. Usually, there is a button or other control that
is manually engaged by the operator to acknowledge the situation and confirm to the machine

that they understand what’s happening.

Itis typically considered a best practice to require the operator to acknowledge each alarm manu-
ally and individually for safety-critical messages. Many development systems, including CODESYS,
do provide a means to acknowledge all alarms with a single press or by using code. Though auto-
and bulk-acknowledging alarms have their time and place, I recommend forcing the operator to
acknowledge alarms individually, regardless of what they are for. By auto- or bulk-acknowledging
alarms, the operator could miss an abnormal situation before it morphs into a dangerous one. In

this section, we’re going to explore how to acknowledge alarms.

Acknowledging alarms logic

The key to acknowledging alarms is the acknowledgment field. When the variable is TRUE, the text

will clear out. For this example, we are going to add a Push Switch to the HMI, as in Figure 15.28:

Timestamp Message

D' Cperaing

u Warring
_n— Error

Figure 15.28: HMI with an Ack switch

410 Alarms: Avoiding Catastrophic Issues with Alarms

Once you add the switch, add a variable called ack of the BOOL type to the PLC_PRG POU file. We
will need to assign the button to the banner’s Acknowledge variable field, as in the following

screenshot:

= Control variables
Adknowledge PLC_PRG.ack
Acknowledage all
Adknowledge c...

Figure 15.29: Banner’s Acknowledge variable field

After configuring the banner, you will need to set up the Push Switch to toggle the variable. To
configure the switch, simply assign the ack variable to the switch’s Variable field. Once every-
thing is set up, run the program and throw the error alarm. Once the alarm appears, you will
want to dial back on the pot, preferably to zero, and click the Ack button. You should notice that

the textis clear and that the appropriate alarm is displayed.

Atthis point, itis recommended that you swap out the banner for a table and experiment. Notice
that with the table, you will have to select the alarm that you want to acknowledge. With all that
being said, we now know enough to move on to our final project: building an alarm system for

our motors.

Final project: motor alarm system

For the final project, we are going to create a motor alarm system. In the real world, motors are
a pivotal part of automation. However, if a motor starts drawing too much or too little current,
there could be a problem. Also, if the operating temperature is over or under range for the motor,
there could be another type of problem. Therefore, we need alarms to indicate when these events
occur and what they are. To round out the chapter, we are going to create an HMI similar to the
one in the last section; however, we are going to add more alarms. So, the first thing we are going

to do is lay out some requirements.

Getting started

Motors have an optimal operating range for temperature, drawn voltage, and communication
between the driver and PLC. We need to monitor these, and if there is any abnormal behavior, we
need to trigger an alarm. Also, since there can be multiple issues all at once, we need to log all the

problems so a technician can search through them. Our software needs to trigger the following:

e Awarning if the voltage is less than 10 volts or greater than 20 volts

e Anerror alarm if the voltage is less than 4 volts or greater than 25 volts

Chapter 15 411

e Awarning alarm if the temperature is less than 65°F or greater than 100°F
e Anerror alarm if the temperature is less than 60°F or greater than 110°F

e Anerror alarm if there is no communication from the drive

To do this, we are going to need to build an HMI that can simulate temperature, communication,

and voltage.

Design/implementation of the HMI
The HMI for the final project can be viewed in Figure 15.30:

- Timestamp = | Message

Voltage Temperature

Figure 15.30: Motor HMI
For this HM], scale the pots to a large number, such as 200 for the upper value.

The variables we are going to implement in the PLC_PRG POU file are as follows:

PROGRAM PLC_PRG

VAR
overTempErr : INT := 110;
overTempWar : INT := 100;
underTempWar : INT := 65;
underTempErr : INT := 60;

412 Alarms: Avoiding Catastrophic Issues with Alarms

overVoltWar : INT := 20;
overVoltErr : INT := 25;
underVoltWar : INT := 10;
underVoltErr : INT := 4;

pot_temp : INT;
pot_voltage : INT;

com : BOOL;
ack : BOOL;
END_VAR

For motor alarms, you can sometimes get away with hardcoding many of the values, as long as
you know in advance that the motor type won’t change. For this example, we are going to assume
that the motor type will be static and hardcode the values. After you implement the variables,
assign them to their corresponding controls that are denoted by the comment. If the variable is

not commented, it will be used in an alarm.

Next, we’re going to create a new alarm group called Final_Example. Since we are hardcoding,
we can set the alarm thresholds with the GUI. The alarm group configuration should look like

the following screenshot:

I Observation.. Details C Class Message On
E" Upper limit PLC_PRG.overTempWar == PLC_PRG.overTempWar ﬁWarning Motor Mearing Over Temp

1 E‘. Lower limit PLC_PRG.overTempWar < PLC_PRG.overTempWar ﬂ‘.‘.farning Motor Nearing Under Temp

2 E4. Lower limit PLC_PRG.pot_temp < PLC_PRG.underTempErr ﬂ Error Motor Under Temp

3 73 Digital (PLC_PRG.com) = {FALSE) ﬂError No Com With Motor

4 E"‘Upperlimit PLC_PRG.pot_voltage =PLC_PRG.overVoltWar ﬂ‘.‘.farning MotorApproaching VoltLimits

5 E#anerlimit PLC_PRG.pot_voltage < PLC_PRG.underVoltWar ﬂWErning Motor Approaching Under ...

5 E" Upper limit PLC_PRG.pot_voltage =PLC_PRG.overValtErr ﬂError Maotar OverVoltage

7 E‘. Lower limit PLC_PRG.pot_voltage < PLC_PRG.underVoltErr ﬂError Motor UnderVoltage

3 E" Upper limit PLC_PRG.pot_temp = PLC_PRG.overVoltErr ﬂ Error Motor Over Temp

Figure 15.31: Alarm thresholds
Next, set the ack variable for the alarm table the same way thatitis setin the following screenshot:

= Control variables
Acknowledge selectad PLC_PRG.ack

Figure 15.32: Acknowledgment

Chapter 15 413

You will also need to set the Final_Example alarm group and tie the ack variable to the switch, as
we did in the PSI example. Once you do this, you are ready to run and play with the HMI. Launch
the program and turn the pots. Observe which alarms appear on the table. When an alarm goes
white, select it and click the Ack switch on the HMI, and watch how the text is cleared. Try trig-
gering multiple different alarms with the HMI to really get a feel for how the system works.

Summary

In summary, this chapter has been a crash course on HMI alarms. We have covered the HMI and
PLC side, as well as the setup for alarms. We have also explored how to acknowledge alarms. At
this point, you should know the basics of alarm systems. Overall, you will need to understand

this chapter to be an automation programmer, so please ensure that you understand the material.

The future is not set. The automation industry is experiencing its fourth revolution. Put bluntly,
the days of the old manufacturing world are quickly evaporating. New technologies such as Al,
I10T, the cloud, and so on are drastically changing the automation landscape. In the next chapter,
we’re going to explore some of these new technologies and see how the industrial controls world

can change!

Questions

1. Whatisan alarm?
What does a red alarm usually mean?
What does a green alarm mean?
What does a yellow alarm mean?

What s an alarm group?

o v W

What s an alarm acknowledgment?

Further reading
e Alarm Management: https://content.helpme-codesys.com/en/CODESYS%20
Visualization/_visu_struct_alarm_management.html

e Visualization of the Alarm System: https://content.helpme-codesys.com/en/CODESYS%20
Visualization/_cds_f_visualize_alarms.html

https://content.helpme-codesys.com/en/CODESYS%20Visualization/_visu_struct_alarm_management.html
https://content.helpme-codesys.com/en/CODESYS%20Visualization/_visu_struct_alarm_management.html
https://content.helpme-codesys.com/en/CODESYS%20Visualization/_cds_f_visualize_alarms.html
https://content.helpme-codesys.com/en/CODESYS%20Visualization/_cds_f_visualize_alarms.html

414 Alarms: Avoiding Catastrophic Issues with Alarms

Get This Book’s PDF Version and
Exclusive Exiras
m]

Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

Part 4

Putting Knowledge
Into Action

In this section, you’ll explore the broader landscape of industrial automation technologies and
look ahead to the future of control systems. You’ll gain an understanding of distributed control
systems (DCSs), PLC networking fundamentals, and emerging trends driving Industry 4.0. This
part concludes with a comprehensive capstone project in which you’ll apply everything you’ve
learned, design principles, programming, debugging, architecture, and more, to repair and en-
hance a realistic, broken codebase. By completing this project, you’ll reinforce your mastery of

the concepts and techniques covered throughout the book.
This part of the book includes the following chapters:

e Chapter 16, DCSs, PLCs, and the Future
e Chapter 17, Putting It All Together: The Final Project

16

DCSs, PLCs, and the Future

We are currently in the midst of the Fourth Industrial Revolution. This new revolution is blur-
ring the lines between traditional computing technologies and industrial controls. The days of
simply getting by with PLCs are coming to an end much the way the days of programming in

pure Ladder Logic are.

The future is going to be much more integrated. Therefore, to understand how the Fourth Indus-

trial Revolution is going to play out, we’re going to explore the following concepts:

e Industry 4.0

. IoT

o Distributed computing and parallel computing
e Common network protocols

e DCS controls

e SCADA

e Cybersecurity

e Emerging technologies

This chapter is going to be theoretical on how integration works at a high level.

418 DCSs, PLCs, and the Future

What is Industry 4.0?

Industry 4.0 is the integration of new and advanced technologies into automation projects. For
the most part, the controls world has been relatively static for the past few decades. The only
real paradigm-shifting changes over the past few decades are PLCs replacing relay logic and the
introduction of OOP in 2013; however, this stagnation is rapidly coming to an end. As has been

explored, technologies such as Al and IoT are revolutionizing how things are done.

The overall goal of Industry 4.0 is to create smart factories. What defines a smart factory will vary;
however, they are typically described as factories and processes that can adapt and change to
factors such as customer demand and market conditions. To accomplish these feats, technologies
that have been seemingly relegated to the traditional IT world are now finding their way into the

manufacturing landscape. Some of these technologies include the following:
o [IoT
e Al
e Cloud computing
e Dataanalytics
e Containerization

e Aswell as many other advanced technologies

A smart factory will, as the name suggests, be smart. It will be able to give close to real-time
feedback, allow for enhanced decision making, be allotted a degree of autonomy, and much more.

Whole books could be written on the subject, and that would only begin to scratch the surface.

In a nutshell, it is fair to think of Industry 4.0 as smart factories. However, for the factories to be

smart, they need devices to communicate, which is where IoT comes into play.

What is loT?

I0T, as has been explored, are devices that allow for communication. More specifically, these
are “smart” devices. What a smart device is can vary greatly depending on who you talk to and
the context you're working in. However, a general consensus is that a smart device is a device
that can send/receive data over a network and has basic computing capabilities. Common smart

devices are as follows:

e Modern phones such as iPhones and Android devices

e Tablets

Chapter 16 419

e Smart watches
° Sensors

e Thermostats

Essentially, anything that can communicate via a network connection is typically considered smart
to some degree. In terms of automation, common IoT devices are sensors that can communicate

via some type of network.

There are many reasons why things such as smart sensors are becoming more integrated in the
modern manufacturing world, with the most prevalent being the collection and transmission
of data. With 10T, a pair of wires can allow many devices to freely share data. When other tech-
nologies, such as wireless communications are factored in, even components as simple as wires
can be eliminated. In either case, the true benefit will be data that can be transmitted across a

factory or even across the planet with ease.

Many smart devices can stream data very efficiently across a network. This means that information
such as manufacturing data can be streamlined to the cloud for storage, analyzed quickly, and
even used to improve Al models. IoT can be a major strength when it comes to manufacturing,

but it also comes with many risks.

Cybersecurity and loT

MostIoT devices are not made with security in mind, if at all. Itis not uncommon for components
such as sensors to come with hardcoded passwords, not enforce strong authentication methods,
leave traffic unencrypted, and so on. This means that nefarious actors, such as hackers, can use

IoT devices to infiltrate a network.

When it comes to security, anything that has weak authentication can be easily hijacked with the
right tools. Since these devices are connected to your network, once something such as a sensor
is commandeered, it can be used as an entry point to pivot to other devices on the network. This
means, when possible, you want to ensure that data coming to and from the smart device is en-
crypted, strong passwords are implemented, there are no hardcoded passwords on any device,
devices have the most up-to-date firmware when possible, and so on. Another defense that can
be used is to segment your network. That is, to isolate [oT devices from the rest of the network
and use strong firewalls. This will ensure that if someone did manage to compromise a sensor,

the infection couldn’t spread very far.

420 DCSs, PLCs, and the Future

Note

\E/ It is generally safe to assume that anything with an IP address can be exploited by

a hacker for nefarious purposes.

IoT is just one technology that is making its way into Industry 4.0. However, if Industry 4.0 is
a grand machine, [0T is but a cog. The next thing we need to explore is distributed and parallel

computing!

Exploring distributed and parallel computing

As can be deduced, many of the techniques we explored in this chapter are well beyond the scope
of a traditional PLC. This is because Industry 4.0 is adopting technologies that are not only PLC-
based but will incorporate traditional computing to a much higher degree than is currently used.
Essentially, this means that the future of automation is going to be a hybrid of advanced control
systems, as well as traditional computing systems such as PCs and servers. In the next section

we’re going to take a look at one of these techniques, distributed computing.

Understanding distributed computing

Distributed computing is not necessarily the same thing as a distributed control system (DCS).
In traditional computing, a distributed system is a series of networked computers that work
towards solving a common goal. A common application of distributed computing is to speed up

and provide redundancy for a system.

Another common use case for distributed computing in Industry 4.0 is IoT devices. Remember that
many IoT devices do have some processing capabilities. This means that many of these devices
can help enable real-time processing. For example, in certain cases, if a smart sensor detects that
10 items have passed in front of it, the device can automatically react and send a signal to shut
off the assembly line. At the other end of the plant, another smart device may receive the signal

from the first smart device and count 10 more items and repeat the cycle.

Al and data analytics are also making a splash in the industrial realm. These systems require
large amounts of data and copious amounts of computing power. Systems such as Apache Spark
are used for such applications. When large amounts of manufacturing data must be analyzed,
systems such as Apache Spark or Hadoop are commonly used to assist in making real-time de-

cisions, among other things.

Chapter 16 421

Typically, these systems will require multiple computer nodes to analyze data from smart sensors,
PLCs, and other data sources. At the end of the process, meaningful data will be produced that

can be used for a variety of tasks.

Understanding parallel computing

Parallel computing is where a task is split across multiple cores in a CPU. Where distributed
computing is usually done by splitting a task into smaller chunks and having them executed on
multiple computing devices, parallel computing is done all on the same device. This is usually
done by splitting up a task, sending it to different cores on the CPU, and having the processor

solve the chunks at the same time.

For typical systems, Graphics Processing Units (GPUs) are used to achieve parallelism. A GPU
will typically have more cores than a CPU, but the cores are less powerful. This means that the
cores on them are typically not good enough to do everyday computing tasks, but they are good
enough to help solve chunks of a large problem simultaneously. This may seem out of place in
the context of a PLC programming book; however, it will make more sense when we explore

emerging technologies.

Concurrency

Parallel computing may sound a lot like concurrency; however, they are two different

V4 concepts. Concurrency is when a CPU switches between multiple tasks. For example,
\@/ a CPU may work on Task A for a bit, then stop and work on Task B for a while, and
repeat. Concurrency is supported by some advanced PLCs. However, itis not all that

common in lower-end controllers. It is also important to remember that special

language extensions and other plugins may be needed.

Understanding processing is great; however, for it to be useful, we need data. In modern appli-
cations, we need data to come from multiple sources. Therefore, we’re going to switch gears and

explore networking!

422 DCSs, PLCs, and the Future

Exploring networking

The key to smart factories is device communication. That is, the core of a smart factory is all the
control devices, equipment, IoT devices, sensors, and more being able to relay data to each other.
As you can deduce, these systems do not speak English. This means that shared communication
protocols are needed for the devices to share data. In the next section, we’re going to explore a
couple of very common communication protocols that are the basis for many more proprietary

forms of communication.

TCP/IP

One of the most common forms of computer communication is called the Transmission Control
Protocol (TCP). TCP is one of the main transport protocols of the Internet Protocol (IP) suite and
is often referred to as TCP/IP. TCP and IP are two individual protocols; however, they are often

used together. Compared to many other protocols, TCP is very reliable but slow in comparison.

For TCP to work, it requires a three-way handshake between two devices. In a typical client-server
model, the device that initiates communication and sends the initial packet is called the client,
and the other device is called the server. Essentially, when the two devices connect, the client
will send a synchronization (SYN) request to the server; in turn, the server will send a synchro-
nization/acknowledgment (SYN/ACK) signal back to the client, and finally, the client will send

a final acknowledgment (ACK) to the server. The process can be seen in Figure 16.1:

- SYN————W

Client] SYNIACK Server

——————ACK———®

Figure 16.1: Three-way handshake

Compared to other communication protocols, such as the User Datagram Protocol (UDP), which

will be explored next, TCP is slower.

Chapter 16 423

To understand why TCP is so much slower than other communication protocols, you must first
understand that TCP is much more reliable than many other communication protocols. In short,
outside of the three-way handshake, when data is transmitted via TCP, it will sequence the data
packets, perform acknowledgments, perform error detection, and, lastly, perform corrections. In
all, this means that TCP will (more or less) ensure that the data is transmitted successfully and

in the correct order.

For many applications, TCP will be either too slow or simply unnecessary. Another alternative

that can be used when TCP is either too slow or unnecessary is UDP.

UDP

Compared to TCP, UDP is much, much faster but much less reliable. Much like TCP, UDP allows a
client and a server to communicate with each other; however, unlike TCP, there is no handshake.
One device will just send data across the line as soon as it is told to do so. Unlike TCP, UDP will
not perform any error checking, acknowledgments, sequencing, or so on. It will, however, con-
duct a checksum to ensure the integrity of the data, and if a data packet is damaged, the packet
will be dropped. With UDP, you simply send and receive data; there is no guarantee that the data
will arrive in the correct order, whether the data packet is corrupted or not, or whether the data

packet will even arrive at all.

The process of sending and receiving data for a UDP system can be viewed in Figure 16.2:

Send

Client Server

o« Receive

Figure 16.2: UDP send/receive process

As can be seen, the UDP process is nothing more than sending and receiving data between the
two devices. There are no intermittent steps; all the system is doing is sending and/or receiving
data. The speed that UDP offers stems from the very simple transmission sequence and the fact

that nothing is guaranteed.

424 DCSs, PLCs, and the Future

When I was first starting outin the IT field, and I learned about UDP and how unreliable it was, I
couldn’t fathom what it could be used for. For the life of me, I couldn’t understand why anyone
would want to use something as unreliable as UDP. However, I soon came to understand that
there are many uses for UDP. UDP is used for applications that do not depend on each data packet.
This may seem a bit odd at first, as it may be hard to think of applications that do not depend on

each data packet, but a couple are digital streaming and digital communications.

To conceptualize this, consider streaming a movie. If a data packet is lost, the worst that will
happen is you will experience a blip in the movie. In the case of streaming, it is more important
to try to keep a smooth streaming experience. On the other hand, consider a video call. If you
were to use TCP, the lag would make the call almost unintelligible. Again, with UDP, you may
lose a few packets of data, which, at worst, would cause a blip or two, but you would still have

arelatively smooth call.

As odd as it may sound, UDP is also used quite a bit in automation programming. Many devices
use UDP as a communication method. I have seen UDP used for many different things. One area
in which I have seen UDP used frequently is in PLC-to-device communication. By this, I mean
the PLC talking to devices such as external power supplies and other devices that the PLC may

need to control.

TCP and UDP are used in many different IT applications and should be thought of as general IT
transport protocols. Though these protocols are general, there are many other proprietary com-

munication protocols that are designed specifically for automation.

PLC/automation device communication

UDP and TCP are general communication protocols. By this, I mean that they are used for many
different types of IT applications, such as internet applications, common computer networks, and
so on. However, many of the PLC manufacturers produce their own communication systems to be
used with their PLCs and various types of industrial components. Some of these systems are very
similar and use the same physical connectors as standard computers do — for example, Ethernet
cables. However, some use exotic connectors and will be unique for certain devices. The first com-

munication protocol we are going to discuss is one of the most popular, which is called Modbus.

Chapter 16 425

Modbus

Modbus is an industrial communication protocol. Modbus is a little different than the other
protocols that we have discussed thus far. Where TCP and UDP are more agnostic in terms of IT
applications, Modbus was developed in the late 70s for use in PLC communications by the com-
pany Modicon, which is now Schneider Electric. Modbus is what is known as an open protocol.
This means that even though it was developed by Modicon, the specs on how the protocol works
are openly published and can be used in accordance with a license or for free. For the most part,

Modbus is the standard for industrial communications.

Modbus works off what is known as a master/slave configuration. Master/slave systems are very
common for industrial communication. For these systems, the master will either query a slave
or node device for information such as a sensor reading. The master can also request that the
node device do something such as toggle a valve, turn on a motor, or the like. With Modbus, only
the master can initiate communication with the node devices; however, the node devices cannot

initiate communication with the master device.

Modbus can be used for many different things. One thing that Modbus is used for is HMI commu-
nication. For example, there are third-party C# and Java libraries that can be used to orchestrate
Modbus communication between devices. For a device such as the Velocio PLC, Modbus can be

used for communication between the PLC and a C# HMI.

It is important to know that there are many different types of Modbus implementations. For
example, there is Modbus ASCII and Modbus RTU. Both RTU and ASCII are serial connections.
Though both will ultimately do the same job, they do differ in how they work. In terms of Modbus
RTU, there is a 3.5-character space between messages. In other words, the 3.5-character space s
used as a delimiter. On the other hand, ASCII uses two ASCII characters to distinguish messages.
RTU uses a binary form to transmit data, whereas ASCII transmits data in ASCII form. This means

that although ASCII Modbus is more readable, it is less efficient than RTU.

426 DCSs, PLCs, and the Future

When setting up a Modbus network, each node will have a unique ID. Relevant IDs can be viewed
in Table 16.1.

Role Modbus Address
Slave 1-247

Reserved by standard (no device allowed tobe | 248-255

assigned)
Master None
Broadcast (function performed by master) 0

Table 16.1: Modbus IDs

A slave may have any ID between 1 and 247; however, as standard, no device can have an address
in the range of 248-255, as these are reserved addresses. Also, the broadcast “device” isn’t an
actual device. The broadcast is a function done by the master. A broadcast is the master sending
out one message to all the slaves. This could be to initialize the slaves at startup, reset them, or

perform any type of group action.

Itisimportant to understand that there are different flavors of the Modbus protocol. You need to
ensure you choose the proper hardware and are developing the correct software for compatibility
with your chosen Modbus flavor. Another common implementation of Modbus is Modbus TCP/IP,
which is Modbus wrapped in Ethernet IP, a.k.a., a TCP frame payload. In the case of Modbus TCP/
IP, you can use standard switches and Ethernet cables for communication. Generally, Modbus

TCP/IP is becoming more popular in newer systems as it is a newer technology.

Though Modbus is a very common protocol thatis often touted as the industry’s de facto protocol,
as stated before, it is not the only one. There are many other protocols, and the next one we are

going to explore is called Profibus.

Profibus

Another very common communication protocol for automation controllers is Profibus. Profibus
was developed and promoted by Siemens to network things such as sensors to a controller. Profibus
works off a master/slave network configuration. Usually, the master device will be some type of
controller, such as a PLC. On the other hand, the slave nodes will be devices such as sensors, drives,
and so on. Profibus networks can experience speeds of up to 12 Mbps; however, most systems are

set to a significantly lower speed, usually around the 1.5 Mbps range.

Chapter 16 427

Unlike many other communication systems, Profibus requires the use of a specialized cable. Usu-
ally, the cable is a shielded purple single-pair RS-485 cable with a DB-9 connector at the end
instead of something such as a standard Ethernet cable. At first glance, the connector on the
cable can seem odd, as it has an on/off switch on it. This switch connects to a terminating resistor
that, when placed in the on position, denotes the end of the device chain. This can cause issues
because if a switch is in the incorrect state, the chain can be prematurely cut short. If you do opt
to use Profibus and you do encounter device communication issues, one of the first places you

should look at is the terminating switches.

Another major difference between Profibus and Ethernet networks is that Profibus will usually
support larger networks. However, great care must be taken when selecting the length of a Pro-
fibus cable. On the short end, it is recommended that there be a minimum cable length of about
3 feet (or 1 meter) between each of the nodes. A cable length of anything shorter can result in
communication issues. It is common, even if the nodes are next to each other in the same cab-
inet, to have 3 feet of cable between each node. On the other hand, the length of the cable will
dictate how fast you can transfer data. In terms of Profibus, the maximum length you want to use
is about 1,200 meters, which will allow up to about 9.6 Kbps. At the other end of the spectrum,
you can get up to 12,000 Kbps with a length of 100 meters. The shorter the cable is, the faster
the data transfer rate can be. This is a very important concept to remember when developing a
Profibus network, as you will have to weigh the pros and cons of having longer cables but slower

transmission speeds, and vice versa.

There is also a limit to the number of devices that can be on a Profibus network. In short, each
device on a Profibus network must have a unique device address. The drawbackis that devices on
a Profibus network can range from 1 to 127. At most, you can have 126 devices on the network. The

address will either be set with a physical dip switch on the device or via the configuration software.

Profibus is a very common communication system, and it is still widely used. However, there is
another type of Profi network called Profinet, which utilizes new Ethernet-based technologies.

The next section will be dedicated to exploring Profinet.

428 DCSs, PLCs, and the Future

Profinet

Siemens also offers another major protocol, called Profinet. Compared to Profibus, Profinet is
based on newer, Ethernet-based technology. Profinet shares many similarities with Ethernet,
even down to the cabling. Most who employ the communication system will use an industrial
version of an Ethernet cable. Normally, you will be able to spot a Profinet cable due to its green
color. However, it is common for some to use a standard Ethernet cable when in a pinch or for

troubleshooting purposes.

Outside of being able to use off-the-shelf cables, Profinet is also faster than Profibus. The extra
speed characteristic stems from its Ethernet roots. Similar to Profibus, Profinet also has length
limitations. A Profinet cable can be up to 100 meters in length. However, Profinet is, on average,
faster than Profibus. Usually, the standard operating speed for a Profinet network is 100 Mbps.
Generally, Profinet is favored in newer applications that require faster communication speeds

and response times.

Note

\/V Though you can sometimes get away with using a standard Ethernet cable, you
should use the recommended cabling when possible. Using cheap cables can intro-

duce noise into the system, and they are sometimes more prone to breaking.

EtherCAT

Similar to Modbus, Profinet, and Profibus, EtherCAT is another proprietary communication pro-
tocol developed by Beckhoff. EtherCAT stands for Ethernet for Control Automation Technology.
Similar to Profinet, it is an Ethernet-based communication protocol. EtherCAT is a communication
system that is used for a wide range of applications, including industrial machinery, medical
equipment, mobile machines, and a variety of other applications. Similar to Profinet, the phys-
ical connection is standard Ethernet cabling. This means that, much like Profinet, off-the-shelf
Ethernet cables can be used when troubleshooting or in a pinch. Though the cabling is the same,

the underlying communication system is different.

The way the EtherCAT system works is unique compared to the other communication protocols
that we have explored thus far. Essentially, the EtherCAT master will send a data packet known
as a frame to all the nodes on the network. The nodes will read the frame and will perform the

instructions that were meant for it and ignore the instructions that were meant for the other

Chapter 16 429

devices on the network. The devices will also add their information to the frame. EtherCAT
devices typically have two Ethernet ports. One of the ports is for sending data, and the other is

used for receiving.

Typically, the network is configured in a ring-like topology similar to what can be seen in Figure 16.3.

Master Device 1

Device 3 Device 2

Figure 16.3: Typical ring EtherCAT configuration

With this configuration, aslong as the communication hardware is intact and working, the frame
will circulate throughout the network. Overall, EtherCAT in this configuration will provide you

with the following:

e The ability to use off-the-shelf Ethernet cables
e Allows for processing on the fly
e Noneed for hardware such as switches and so on, as with Profinet
e Adowned node will not necessarily kill the communication chain
In all, EtherCAT is a very powerful and robust communication protocol that, due to using the

lowest two layers of the Ethernet protocol, is significantly faster than Modbus or Profinet, which

makes it very suitable for real-time applications. Another common industrial system is EtherNet/IP.

430 DCSs, PLCs, and the Future

EtherNet/IP

EtherNet/IP is an industrial fieldbus protocol that runs on standard Ethernet hardware. This
protocol uses TCP/IP and UDP/IP for the transport layers and CIP as its application layer. For
this protocol, the IP does not stand for Internet Protocol as it did with TCP/IP. For EtherNet/IP,
the IP stands for Industrial Protocol. The CIP protocol is the same protocol family used by other

common communication systems, such as DeviceNet, ControlNet, and CompoNet.

This protocol doesn’t force a single topology, such as a star or ring topology. Since it uses standard
Ethernet, you can use the same network layouts that are used in traditional IT. Though you are
not limited to a specific network layout, the most common topology for this protocol is the star
network. In this configuration, there is a central node in the middle of the network that directs

traffic to other devices.

Unlike with Modbus and the Profi-networks, EtherNet/IP does not have a fixed device count, at
least in theory. You can technically add as many devices as you want to the network. In reality,
there are practical limits such as the PLCs having CIP connection limits, limited network switch

bandwidth, and so on.

Communication is only half the battle; the next concept that we’re going to explore in terms of

smart factories is Distributed Control Systems (DCSs).

Exploring DCSs

DCSs are very popular when there are multiple processes that need to be coordinated. Essentially,

a DCSis a network of controllers that use some form of communication to coordinate processes.

Note

\G/‘ Though not always used, it is very common for a DCS system to have a master com-

puting cluster that acts as a conductor to help coordinate the other controllers.

Chapter 16

431

Generally, many of the DCSs that I have worked on in the past can be conceptualized as in Figure

16.4:

Computer Cluster

Process 1

Process 2

Process 3

Process 4

Figure 16.4: DCS layout

In Figure 16.4, the central cluster coordinates four processes. At its heart, a DCS can simply be

thought of as a central controller that supervises multiple processes. The cluster can be composed

of multiple computing systems, such as operator terminals and so on. In all, a DCS is a supervisory

system for a whole process or facility.

DCS applications

Alogical question is where are DCSs used? The answer is pretty much anywhere. Some common

areas where DCSs are used are as follows:

e Smart factories

e Traffic control systems
e Chemical plants

e Manufacturing facilities

e Nuclear power plants

e Agricultural environments

e Some space launch systems

DCSs can be used anywhere where whole processes need to be monitored or coordinated.

432 DCSs, PLCs, and the Future

Understanding the difference between PLCs and DCSs

The line between PLCs and DCSs is beginning to blur. In short, you can think of DCSs and PLCs
as two separate types of controllers. In all fairness, what constitutes a PLC, DCS, and the various
types of controllers on the market is beginning to blur. A DCS in this context is a system such as
the Emerson DeltaV, which allows 1/O to be spread out. However, it is not unheard of to have a
DCS be a cluster of computing devices that control/orchestrate PLCs. For example, if you have
a number of welding robots that are controlled by a PLC, you can have a DCS coordinate the
robots by sending control signals to the PLC. In cases like this, a DCS wouldn’t do a good job of
controlling the robot directly, but it could be used to orchestrate the robots. Put simply, a PLC is

designed to control a thing, while a DCS is designed to orchestrate a process.

The best way to demonstrate the differences between the two types of controllers is to remem-
ber what they are used for. In short, if you need scalability and the ability to control multiple
processes, a DCS is probably the best. You can use the following definitions to help select the

appropriate system:

PLC: A PLC is used when there is a need for a fast response time and the process that it controls
is singular. You may also use a PLC when the application is not geographically dispersed. Put

simply, a PLC is designed to control a single system, such as a single machine.

DCS: A DCS is used when you need to supervise a whole process. Think of a DCS as a conductor
of an orchestra. The same way a conductor does not play an instrument in the band, a DCS is

usually not responsible for a single process.

Since the lines between a DCS and PLC are blurring, especially when computers that can support
parallel and distributed computing are in the mix, a PLC can sometimes coordinate multiple
machines, which, to a degree, is a form of DCS. This is typically done with advanced PLCs that

can support techniques such as concurrency.

Exploring SCADA

A DCS is somewhat conceptually similar to a SCADA system, and to make matters worse, some
newer engineers will often consider an HMI to be a SCADA. However, a SCADA system is more
of an overarching monitoring system. SCADA systems are large systems that are designed to
control and monitor whole processes. A SCADA system will usually control a whole plant and
allow remote access for people who are not on site. A SCADA system is composed of many differ-
ent modules, such as PLCs, HMIs, RTUs, sensors, and so on. In other words, SCADA systems are

high-level supervisory systems that tell other modules what to do.

Chapter 16 433

They will also perform actions such as logging data into databases. Whereas an HMI is just a U,
SCADA can best be thought of as a system that includes HMIs, PLCs, sensors, and so on. In short,
a SCADA system is a remote monitoring system that is composed of many different hardware
and software components, while an HMI is a software component that is local to a machine or

set of machines.

These new integrated environments are juicy targets for attackers. With smart factories becoming
the norm, the interconnected nature of factories is becoming a prime target for bad actors. This
makes sense if you think about it. If you're a bad actor and want to cause havoc, you could, in
theory, cripple a smart factory and cost the company millions of dollars in lost revenue. Therefore,

in the next section, we’re going to explore some basics to help secure your networks.

Exploring cybersecurity

Cybersecurity is something that, up until recently, wasn’t considered so much in the day-to-day
life of a typical automation engineer. For smaller businesses, simply programming a PLC or having
basic password management will suffice. However, with the integration of new technologies and
the sweeping nature of Industry 4.0, cybersecurity is going to be a must. To understand how to

defend your system, you need to first understand how an attacker thinks.

Understanding reconnaissance

Before an attacker can attack your system, they need to understand your system. This can be
done in a couple of ways, one of which is actually very legal. When an attacker puts your system
in their crosshairs, they will try to learn as much as they can about your organization, the system,
your coworkers, and even you. This is called passive recon. In this phase, the attacker will use
resources such as social media and other publicly available resources to find as much info as they
can. A common place that attackers can scope for information is LinkedIn or job posting sites, as
itis common for people to list what technologies they work with or what the company uses. As
aresult, the attacker can get a feel for the systems being used, and they can research vulnerabili-
ties in them. Keep in mind, this is perfectly legal because the attacker is never engaging with the
system. On the other hand, active recon requires the attacker to directly interact with the target
systems. This could be someone scanning for open ports, trying to get information about the

target’s OS, and more. If no permission is given, this action is typically illegal.

434 DCSs, PLCs, and the Future

Note

V4 Avoid posting too much about yourself or your position online. This information
\G/‘ could be used to hack either your home or workplace. One thing that can really help
prevent attacks is to avoid posting what PLCs, SCADA, HMIs, and other technologies

you’re working with.

Avoiding the use of default passwords

In automation, many systems come with default passwords; that is, passwords that are preload-
ed onto a device. These passwords are not meant to be secure. They simply serve the purpose
of allowing the integrator to log in and configure the device. Under no circumstances should
you ever deploy a system with a default password. Though this may seem like common sense,
it happens way too often. All devices should have their passwords changed as soon as possible.
The password should be changed to a secure password that is at least 12 characters and contains

an assortment of letters, numbers, and special characters. This is especially true for IoT devices.

Note

\/V Do not use passwords that are related to you, such as the name of a pet, significant
other, child, or so on. It is best to create a fake persona and use those names/dates

for your passwords.

Configuring firewalls

A firewall is a piece of software or hardware that can block traffic. This is very useful because it
can block unwanted users, such as hackers, from accessing your networks. Typically, a firewall
works off a set of rules to allow or block traffic. A data packet can only pass through the firewall

if the rules allow it.

A common type of attack a firewall can block is a Denial of Service (DOS) or its more advanced
counterpart, a Distributed Denial of Service (DDoS). These attacks attempt to flood a network
with junk traffic that can render it inoperable. However, if you put a firewall up, it will usually

block the junk packets and prevent the flood.

Chapter 16 435

Whitelisting and blacklisting

A common way to configure your firewalls is to use whitelisting or blacklisting. Whitelisting is
a technique where you block all traffic that is not on a list. Whitelisting makes your system very
safe because you can, in essence, prevent any traffic that you do not explicitly state. However, for
large enterprise systems, this can be cumbersome and inefficient. You’ll often use whitelisting
in what’s called a Zero Trust environment. In this type of environment, you essentially treat all

traffic as suspicious.

A more common way of vetting traffic is using what’s called blacklisting. Blacklisting is the oppo-
site of whitelisting in a way. Where whitelisting only allows traffic from a vetted list, blacklisting

will block traffic that is on the list and allows all other traffic.

Though SCADA security has evolved a lot, SCADA systems are often a juicy target in terms of
security. Firewalls are often placed in front of SCADA systems to help vet traffic. Doing so adds a

layer of defense against would-be hijackers.

Implementing encryption

Encryption is key! Encryption is essentially a way to scramble your data so that if a hacker does

get hold of it, they won’t understand it. Data can exist in three states:

e Dataatrest: Data is sitting on a storage device. It is not moving or being used.
e Datain transit: Datais moving through a network. It is transported from point A to point B.

e Datain use: Datais being used by some process.
To protect your data, you want to encrypt it as much as possible.

IoT devices sometimes do not encrypt data, or at least not very well. This means that attackers
who intercept the data will be able to understand it very easily. This may not seem like a big deal,
butitis. If ahacker canread the data, they can gain meaningful information from that data. Worse
yet, they can alter the integrity of the data. This means they could cause havoc, such as throwing
off the number of parts being made, altering values such as temperature parameters, which can

damage parts, and many other nefarious tasks.

To prevent this, it is highly recommended to encrypt IoT data. To do this, you will typically have
to employ advanced programming and network technologies. There will be extra effort involved,

but it will be worth it in the long run.

436 DCSs, PLCs, and the Future

Turning off unused ports

Ports are like doors into your system. If someone is trying to attack your network, the first thing
the attacker will look for is open ports. This is usually what they do during active recon. If they
find an open port, they can usually use that as an access point. In a network, there are some basic
ports that are always used. These ports are called well-known ports, and their numbers range
from @ to 1023. These ports support services such as SSH, FTP, HTTP, HTTPS, and so on. Ports
1024-49151 are known as registered ports. These ports are registered for certain services, such as
certain databases, and so on. Finally, there are what are called dynamic ports. These ports range

from 49152-65535 and are usually used by programmers for their apps.

\Q/\, Note

Dynamic ports are sometimes called ephemeral or private ports.

Unfortunately, if you use these services, you need to have the port on. The general rule of thumb is
to turn off any service you are not using and to disable any ports you are not using for your system.
Itis generally recommended that you scan your network with a tool such as Nmap, which can be
used to return all open ports, running services, OS fingerprints, and other types of information

that can be used to attack your system.

Exploring segmentation

It is usually a good idea to segment your networks. This will usually require the assistance of a
network engineer. Segmentation is essentially isolating devices into their own networks. This
can be done in many ways, and by doing so, you are ensuring that there are a limited number of
ways in and out of that part of the network, which means attackers will have fewer avenues to

attack you.

At the very least, you want to isolate your industrial network from your users’ network. This
means your factory or whatever environment you're in should not be connected to the main office
network. If you do have the two networks integrated, you can open yourself up to attacks. If an
office network device, office user, or anything else becomes compromised, your factory could be

attacked. This is actually a very common avenue that attackers will use.

In some cases, some office users will need to be able to access the network. For example, manag-
ers, engineers, and so on. In these cases, certain techniques can be used, such as Virtual Private

Networks (VPNs), and so on; however, this should be limited and allowed on an as-needed basis.

Chapter 16 437

These are just some high-level techniques and concepts that are related to cybersecurity. In real-
ity, there is a lot to the field. A lot goes into securing a network, and this section just touches the
surface. Cybersecurity for industrial automation is a fairly new concept, but a very important
one, especially in the context of Industry 4.0, where everything is connected via a network. It is
highly recommended that you design your system with security in mind. This may include hiring
a specialized cybersecurity engineer or consultant. In summary, cybersecurity is a journey, not

a destination!

Though it can be argued that cybersecurity is an emerging field in automation, it is not the only
one. There are many other emerging technologies that are being integrated into automation. In
the next section, we’re going to explore some of the concepts and how they will play out in the

automation realm!

Emerging technologies

The automation landscape of tomorrow is more closely going to resemble the IT landscape of
today. In fact, outside of PLC programming, the two fields may be indistinguishable from one
another. The advanced computing that will be required to power the industrial landscape is go-
ing to require many technologies and techniques that are just now emerging in the IT landscape.
Throughout this book, we have explored some concepts, such as Al, cloud computing, DevOps,
and so on, that are not usually associated with industrial technologies. In this section, we’re
going to delve a little deeper into emerging technologies to see how Industry 4.0 may play out,

starting with microservices.

Exploring microservices

Microservices are common in larger software systems. Many organizations use them, and they
are the norm. To be fair, industrial systems use this architecture as well; however, the architecture
is not as common in automation as it is in the traditional IT landscape. However, for advanced

applications, such as the ones explored in this book, they will become the norm.

In short, microservices are an architecture where responsibilities are broken down into services.
For example, a service can be thought of as a part of a system that does a task. In this case, a
service might be a program that monitors the temperature of something, such as an oven. In
this architecture, a service is responsible for only one thing. By doing this, if a service becomes

unavailable, it won’t necessarily kill the whole system.

438 DCSs, PLCs, and the Future

Prompt engineering

As we have explored, LLMs such as ChatGPT are here to stay. Prompt engineering is going to
become a key skill for developers as these systems can and usually are used to help generate code,
troubleshoot code, and more. Many systems offer an Application Programming Interface (API).
This means, by using a traditional programming language such as C#, Java, Python, Node.js, or

the like, you can integrate these LLMs into your system.

ChatGPT cannot run directly on your PLC or control board; however, you can still use it. To do
this, you can network a PLC to a PC. The PLC can send data to the PC that is running some type
of software that can send data to the Al using an API call. From there, the operator could write a
prompt such as Why is Line 3 running slow? and, assuming that the necessary data is sent to the

Al it could give you valuable feedback. This means that Al systems could help with the following:

e Optimization
e Troubleshooting

e Production advice

Moreover, this software, which would be used to read data from the PLC and pass it to the Al,

would be a prime example of when to use a microservice.

It should be noted that Al such as ChatGPT is not fully fleshed out, and it’s not fully understood
what they can and cannot do. However, depending on the model, data, and so on, you can greatly

increase the intelligence of your system by introducing AI and prompts into it.

Understanding digital twins

With the widespread adoption of parallel and distributed computing, simulations are going to
be integral in the future. A key type of simulation is a digital twin. A digital twin can be thought
of as a computerized model of a machine or series of machines that simulates a process. The
physical machine(s) will typically be outfitted with IoT sensors that feed data into a computer,
and the physical device can be simulated in a digital landscape. These digital twins can then be
used as a testbed for different parameters. For example, the results of altering the speed of several

machines can be modeled and analyzed with digital twins.

Digital twins open up very interesting avenues to explore with advanced Al systems such as
ChatGPT and the like. The data collected from the digital twins can be fed into an Al system, and
prompts can be employed to help analyze the data. For example, you could ask, What happens if
we decrease the coolant on machine 47 and, using data from the digital twin, the Al could provide

insight into what could happen.

Chapter 16 439

Digital twins can require copious amounts of computing resources. You will need GPUs and to
employ parallel processing for all the complex math and data processing that will be required.

This can be very costly and difficult to maintain on-site. A workaround is to use the cloud.

The cloud in industrial settings

We have touched on what the cloud is. Essentially, cloud service providers sell users resources
such as compute resources, storage, databases, and more. Most cloud providers also offer ser-
vices to operate your IoT infrastructure. To effectively utilize these technologies in the future,
the cloud is going to become pivotal. In short, a cloud service provider such as AWS will give you
a place to deploy your microservices to, provide the advanced computing resources needed to
power digital twins, house the copious amounts of data that are usually generated by modern
systems, and more. Though you will have to pay for these services, and to have the full shebang
of all the cool emerging technologies will cost a pretty penny, it will be worth it. Time is money,
and in automation, having access to this real-time data and the necessary computing power to
make sense of it is vital. The cloud and automation will become more integrated in the future. If
you want a competitive edge, exploring a few cloud providers, such as AWS, Azure, Google Cloud,

Oracle, or any other, is worth it!

Summary

This chapter explored emerging technologies, SCADA, DCSs, cybersecurity, and more. In short,
this chapter was an overview of Industry 4.0 and what it could bring. How Industry 4.0 will play
out is yet to be fully known. Where the old landscape had automation on one end and the tradi-
tional IT world on the other, the new industrial landscape will be a hybrid of the two. Much like
how the days of only needing to know Ladder Logic are coming to an end, so too are the days of
simply knowing how to program a PLC. The factories that are emerging are going to more closely
resemble traditional IT systems than their PLC-only based counterparts of the past. If I could
give any advice to a would-be engineer, it would be this: research the emerging technologies
and current computing techniques of today and learn to apply those to whatever project you're

working on. With that, we’re going to move on to our final chapter!

440 DCSs, PLCs, and the Future

Questions
1. What’s a DCS for?
2. Whatis a digital twin?
3. Can ChatGPT be run on a PLC?
4. Whatis the difference between whitelisting and blacklisting?
5. Whatis a firewall?
6. WhatisaDDoS?
7. AreloT devices built with security in mind?
8. Whatis encryption?
9. Whatis a microservice?
10. Whatis parallel computing?
11. Whatis distributed computing?
12. What s the difference between UDP and TCP?

13. Whatis the recommended network architecture for EtherCat?

Join our community on Discord

Join our community’s Discord space for discussions with the authors and other readers: https://

packt.link/embeddedsystems

https://packt.link/embeddedsystems
https://packt.link/embeddedsystems

17

Putting It All Together:
The Final Project

Important!

The goal of this chapter is for you to use what we have explored throughout the

V4 book and apply it. Therefore, there will be no prebuilt code. This project will be all
\G/‘ hands-on, which means you will have to type it out and troubleshoot it as you would
in the real world. To simulate a real project, you will be met with broken code, red

herrings, and faulty logic that you will need to troubleshoot using the concepts we

have explored. Nonetheless, there will be hints to help you along!

Congratulations on making it this far in the book. Hopefully, by this point, you have a good grasp
on the more modern and advanced concepts of PLC programming and software engineering in
general. By this point, you should have become not only a better PLC programmer but also a
better software developer in general. Thus far, we have explored OOP, advanced Structured Text,
alarms, HMIs, the SDLC, and much, much more. In all, at this point, if you understand most of the

material we covered, you’re probably light years ahead of the average automation programmer.

442 Putting It All Together: The Final Project

As far as programming and HMI development are concerned, we have reached a point where we
can combine all these concepts into a fully working project. This chapter will be unlike the other
chapters as we will not be exploring new concepts. Instead, we are going to apply the concepts
we have learned throughout the book to make a simulated industrial oven. In a nutshell, we are

going to cover the following:

e Project overview

e Requirement gathering

e HMIdesign

e HMIimplementation

e PLCcode design

e Implementing the PLC code

e Testing the application

The goal of this project is to integrate many of the concepts that we have learned in the previous
chapters to form an industrial oven. Ovens are very common PLC-driven devices as they are used

in many different manufacturing processes.

However, unlike most of the other projects we have built thus far, the code will be written in such
a manner that it should be improved upon. In other words, the code in this chapter will be the

first draft of a program and won’t work as intended. Key details to look for are as follows:

e Badnames
¢ Incomplete methods, function blocks, and so on.
e Incorrectly declared variables.

e Potential safety issues.

There will be other issues to look for as well. This twist stems from the fact that most software
will usually need to be debugged, cleaned, and refactored before release. Also, as with normal
automation programming, there will be some red herrings along the way that are very similar
to ones you will encounter in the real world! Though we will apply skills we learned throughout
the book, you as the reader should be constantly on the lookout for a way to improve and, when

necessary, debug the software as you would do for a real-world application.

This chapter will attempt to follow the full SDLC in a Waterfall-like method. Since thisis alearning
example, the exact process that one would use for a real-world project will likely differ. Nonethe-

less, we're going to keep the workflow as real-world as possible.

Chapter 17 443

Technical requirements

To complete this project, you will need a working copy of CODESYS. However, no code for this
project will be provided. This project is designed to be erroneous and new versions of the pro-
gramming environment can introduce other bugs that stem from the newer system as opposed

to the engineered defects.

This chapter will require a comprehensive knowledge of all the topics covered in the previous
chapters. In other words, you can think of this chapter as the final boss chapter. If you have been
skipping around the book, it is best to go back and read the chapters that you skipped. If you feel

comfortable with the material already covered, you are free to proceed.

Project overview

For this project, we're going to create an industrial oven. Industrial ovens are common PLC ap-
plications; they also need to have a number of safety controls to help avoid injury or death. In the

real world, industrial ovens can be used for applications like the following:

e Curing paint
e Preheating parts
e Drying parts

e Aswell as many other applications.

For this project, our simulated customer is requesting an oven system for drying metal fixtures
after a washing cycle. The way the manufacturing process works is that once a part is washed,
itis placed in the oven for a variable amount of time depending on the fixture so that all excess
moisture can be burned off. We have to be careful because there are rubber O-rings in the fixtures
that will melt if the O-rings experience temperatures above their rated limit. The customer will
want to be able to dry different parts that will require different dry times, and each fixture will
have an O-ring with a different temperature limit. With all that in mind, we can now move on

to gathering our requirements.

Gathering the requirements

Based on the run down above, we can establish the project features needed with the following

user stories:

e Asan operator, I want to be able to manually set the optimal temperature of the oven so

that I can use the oven for different fixtures.

444 Putting It All Together: The Final Project

e As an operator, I want to know when the oven is too hot to enter so that I know not to

enter the heated area.

e Asan operator, I want the door to automatically lock and unlock so I don’t accidentally

enter the oven.

e Asan operator, I want to know when the oven’s temperature is at room temperature so

that I can safely enter the oven to remove the dry fixtures.

e Asan operator, I want to view an alarm when the temperature is over the O-rings’ rated

temperature so that I know when the O-ring has been compromised.

e Asanoperator, I want the PLC to automatically shut down when the oven’s temperature
reaches 10°F over the O-rings’ rated temperature so that I can retrieve the parts as quickly

as possible.

These are high-level requirements, as we start developing the project we will probably run into
more questions as we start implementing the user stories. However, these requirements are

adequate for us to start hammering out the PLC and HMI side of the system.

Note

\/K/ User stories that are similar to what we have are typically high-level requirements.
As you start drilling down and completing work you will often need to either refine

these requirements Oor generate more granular feature requirements.

Chances are, if you were developing this application for an organization, the workload would
probably be split between PLC programmer (s) and HMI developer(s); however, in cases such as

this one, you will be responsible for both the HMI and PLC side of the project.

Depending on your thought process, you may want to start working on either the HMI or PLC
side of the application first. For me, it has always been easier to work from the HMI side to the
PLC code. This is mainly because once you have a decent outline of what the HMI is responsible
for, it is easier to hammer out the PLC code. However, this is a personal preference, and you may
find it easier to do the work in the opposite manner. In real life, you can plan out your workflow

any way you want. With that, the first thing we are going to do is lay out the design of our HMI.

Chapter 17 445

HMI design

The first thing we should do is lay out our HMI. Based on the requirements, at the minimum

we’re going to need,

e Analarm table

e Aseries of input fields to allow the user to enter the temperature of the oven
e A gauge to show the current temperature of the oven

e Apower switch and LED for the oven

e Analarm acknowledgment button

With the requirements, we can lay out our HMI to look like the following screenshot:

| Timestamp _~| Message, J
e

Current Temp

Power Safe Temp At Temp

) A O

) _—

Figure 17.1: Oven HMI

This is a simple HMI layout for our project. We have a simple Power button in the lower left-hand
corner and a target temperature spinner above it. In the center of the screen, we have an alarm
table for our alarm readout as well as three LEDs to indicate that the oven is on, the temperature
of the oven is safe to enter, and a final LED that indicates the temperature of the oven is at the
target temperature. We also have a temperature gauge to read the exact temperature of the oven
and an acknowledgment button to acknowledge the alarms. Now that we have a rough layout

for the HMI, we can continue and start implementing the logic for it.

446 Putting It All Together: The Final Project

HMI implementation

The first thing we need to do is start declaring variables. For this example, we are going to put all
the variables that control the HMI in a global variable list (GVL) called vars for ease of use. The

first set of variables we are going to implement are the LED variables.

Improvement!

\G/‘ Consider the name of the GVL. Is vars a good name for it? Should you refactor the
GVL with a better name?

LED variables

We have three LEDs that are used as temperature indicators and one LED thatis used as a power

indicator. We are going to create four Boolean variables, as follows:

PROGRAM PLC_PRG

VAR
power : BOOL;
safe_temp : BOOL;
target_temp : BOOL;
END_VAR

law
¥ |

Are these LED variables declared in the correct file?

The following indicates which variables should be mapped to which LEDs:

e The power variable will be assigned to the switch and the power LED
e The safe_temp variable will be assigned to the safe_temp LED
e The target_temp variable will be assigned to the target_temp LED

Once you are complete with hooking up those variables, you can move on to the declaration and

assignments of the acknowledgment variable.

Chapter 17 447

Acknowledgment variable

The next variable that we need to set up is the acknowledgment variable. As in the past chapters,

we will create a Boolean variable called ack, as follows:

ack : BOOL;

This variable will need to be assigned to the following:

e The Ackbutton

e The Acknowledgement field in the alarm table
The button configuration should look like this:

= OnMouseClick Configure...
Toggle Variable “$ PLC_PRG.ack

Figure 17.2: Button setup

As the preceding screenshot depicts, you will want to toggle the ack variable when the button
is clicked. As for the alarm table, you will need to set up a field similar to what is shown in the

following screenshot:
= Control variables

Acknowledge selected PLC_PRG.ack

Figure 17.3: Alarm table acknowledgment configuration

If you followed the steps correctly, you should now have the button and part of the alarm table

set up and ready to go. This means you can move on to implementing the spinner.

V4 Design improvement
1)

Can we use a simpler control for the acknowledgement button?

Spinner variables/setup

The spinner variable is going to be an integer. The variable will be responsible for providing a

target temperature for the oven. The variable will look like this:

target_temp_value : INT;

448 Putting It All Together: The Final Project

The target_temp_value variable will be assigned to the target temperature spinner.

Where to implement?

\G/‘ Notice it was not specified where to implement the target_temp_value. Using

what we’ve learned and explored, where should you implement it?

We also need to set the range on the spinners as well. For the sake of simplicity, we’re going to set

the range on the target temperature spinner to 509, as in the following screenshot:

- Value range
Minimum value 100
Maximum value 500

Figure 17.4: Target temperature value range

For this example, we’re going to set a minimum value of 100°F and a maximum temperature of

500°F. Once you complete these operations, you can move on to creating the variable for the gauge.

Gauge variable/setup
Much as with the spinner, the gauge is going to be attached to an integer as well. We’re going to

use the following variable for the gauge:

oven_temp : INT;

In areal-world application, all the values would be floating points such as a REAL data type. How-
ever, for this project, we are going to use INT data types to avoid using decimals for the sake of
simplicity. Much as with the spinner, we will also need to set the range on the gauge as well. We're
going to set the range to 700°F to indicate overheating. The extra 200° is an arbitrary number;
however, when you’re working with things such as gauges, you will usually want to set the range
over the maximum value just in case the part experiences values over the expected maximum.

You will want to set the values as shown in the following screenshot:

- Scale
Subscale position Outside
Scale type Lines
Scale start 0
Scale end 700
Main scale 100

Figure 17.5: Gauge configuration

Chapter 17 449

In this case, we set the maximum value on the gauge to 700; however, we also adjusted the main
scale to 100. This is so the gauge lines are not bunched up, and the gauge is not cluttered. After

you complete these operations, your gauge should look like the one shown in Figure 17.6:

Current Temp

Figure 17.6: Configured gauge

The final component that we need to set up is the alarm table. Once you’re sure you are done with

the gauge, you can move on to the alarm table.

Alarm table variables/configuration

To configure the alarm table, the first thing we’re going to do is create an Alarm_configuration
object and add an alarm group called Temperature. When you’re done, your alarm configuration
tree should look like this:

= ﬁ Alarm Configuration

& Error

D nfo

@ Warning

N Temperature
@ AlarmStorage
(] Temperature

Figure 17.7: Alarm configuration tree

In the case of this example, we’re going to trigger the alarm with a series of Boolean variables
that will be set in the PLC code. This means we’re going to need to declare three more variables,

as follows:

oven_overTemp : BOOL;
oven_atTemp : BOOL;

oven_safeTemp : INT;

450 Putting It All Together: The Final Project

\E/, Bug

Do you see a wrong data type in the code?

From the variables, we can see that there will be an info alarm that will tell the operator that
the oven is safe to enter, a warning variable that will tell the operator when the oven is at the set

temperature, and finally an error alarm that will tell the operator that the oven is overheating.

In the variables above we have oven_safeTemp and in the LED section we have safe_temp. In
theory both variables should be set to the same state when the oven is at a safe temperature to
enter. Now, there is a tradeoff to doing this. For starters, if the code is not properly implemented
the variables could lose sync with each other, meaning that one may be on and the other off;
however, we will have more granular control over the variables. If we condensed everything to
use one variable, for example, safe_temp, we wouldn’t have to worry about losing sync between
the two variables, but we would lose granular control. In my opinion, it is important to keep the

granular control in case we have future expansions that need it.

After you declare these variables, you will need to set up the alarm configuration. As such, you

will want to double-click Temperature and match the setup to the following:

D Observation Type Details D.. Class Message

fi] 74 Digital (vars.oven_overTemp) = (TRUE) &Error Oven is overheating
1 74 Digital (vars.oven_atTemp) = (TRUE) g\ warning Oven is at temp

2 94 Digital (vars.oven_safeTemp) = (TRUE) A Info Oven is safe to enter

Figure 17.8: Alarm configuration setting

Once that is done, we will need to configure our error, warning, and info classes.

Error class setup

The error class will consist of the following configuration:

State Font Background Color
Normal
Active B Microsoft Sans Serif, 9.75pt, style=Bold | I Red

Waiting for confirmation

Figure 17.9: Error class configuration

Once you have completed the error setup, double-click on the warning class.

Chapter 17 451

Warning class configuration

The warning class will consist of the following configuration:

State Font Background Color
Mormal
Active [l Microsoft Sans Serif, 9.75pt, style=Bold] 255, 255, 0

Figure 17.10: Warning class configuration

Once you finish the configuration for this class, you will need to set up the final class, which is

the info class.

Info class configuration

The final class that we will need to set up is the info class. This class will consist of the following

settings:
State Font Background Color
Normal
Active I Microsoft Sans Serif, 9.75pt, style=Bold [0, 255, 0

Figure 17.11: Info class configuration
After you complete the configuration for this class, you can move on to assigning the alarm group

to the alarm table.

Alarm table configuration

The steps to assign the alarm group to the table will be the same as the ones outlined in Chapter

15. Your table configuration should match the following screenshot:

= Alarm configuration
Alarm groups @ Temperature
Priority from 0
Priority to 255
Alarm dlasses Yol

Figure 17.12: Alarm table configuration

At this point, the control HMI should be complete. All of the controls should be hooked up and

configured. Therefore, the next phase in the development cycle is to implement the PLC code.

452 Putting It All Together: The Final Project

PLC code design

Since we are going to begin writing the PLC code, we need to start fleshing out a design. To keep

the design simple, let’s break the project down into the following function blocks:

1. oven: This function block will handle turning the oven on and off, as well as ramping the
oven up to temperature.

2. Alarms: This function block will trigger error, warning, and info alarms.

3. Door: This function block will be responsible for locking and unlocking the oven door.

You can see an illustration of the function blocks in the following diagram:

B Alarms
error()
waming()
= Oven info()
rampUp()
readTemp()
shutdown() = Door
unlockDoor() b IDoor
lockDoor()

Figure 17.13: PLC code UML

As can be seen in the preceding diagram, the PLC side will consist of an Oven, Alarms, and Door
function block as well as a Door interface. The Oven function block will be the workhorse of the
PLC program. Essentially, the PLC side will be built around the composition principle. In short,

we can justify this with the following statements:

e The oven has a series of alarms that need to be triggered

e Theoven has a door that needs to be locked and unlocked

Finally, the purpose of the Door interface is for us to create a model of a door. There are many
types of doors that we can use but they will all automatically lock and unlock. Therefore, to

properly model the door, we will use an interface and simply implement the methods for the

specific door that we use.

Chapter 17 453

This design is very simple and requires minimal code. Also, since we are using composition and
all the function blocks/methods are following the single-responsibility principle (SRP), this

design will allow for future expansion and easy maintenance.

Though simple, the PLC design will be quality enough to implement. As with the theme of this
book, since we have a decent design, we should be able to easily implement the code. With all

that being said, we can now implement the PLC code.

Implementing the PLC code

The code implementation should be relatively minimal. The first thing we are going to do is declare
our function blocks. For this, we are going to create a folder named FunctionBlocks and use it
to house the Oven, Alarms, and Door function blocks. When all the function blocks and methods

are implemented, your tree should look like this:

=) FunctionBlocks
= =0 IDoor
;;j lockDoor
_ﬁ unlockDoor
= |E| Alarms (FB)
G error
j}" info
_'_i} warning
=|E] Door (FB)
it unlogkDoor,
Oven (FB)
j] ramplp

=1

|ipq readTemp

(i shutdown

Figure 17.14: Function blocks

Implementation

\/&/ Notice that parameters or return types for the methods were not specified. Before
you move on, modify the methods with all the parameters and return types you
think they need.

To start implementing code, we’re going to implement the PLC_PRG POU file.

454 Putting It All Together: The Final Project

PLC_PRG file

The first place we’re going to start implementing code is in the PLC_PRG file. Since it is our entry
point, we’re going to put our starting logic here. In the spinner section, a number of variable im-
plementation locations were left up to you. I recommend placing the variables in the vars GVL or
in a separate GVL. For my implementation I'm going to put them in the vars GVL for simplicity.
If you opted to use another GVL or location modify the book code accordingly.

Do you agree?

\E/‘ Did you put your variables in the vars GVL? If not, why? Try to come up with some

pros and cons for putting them in the vars GVL verses somewhere else.

The reference variable for the Oven, Alarms, and Door function blocks will be defined in the PLC_PRG

location, like in the following:

PROGRAM PLC_PRG

VAR
oven : Oven;
alarms : Alarms;
door : Door;
END_VAR

Once you add the oven variable, you should only need to add the following code to the file:

vars.safe_temp := TRUE;

alarms.info();

IF vars.power = TRUE THEN
oven.readTemp();
door.lockDoor();

END_IF

//shutdown

IF vars.power = FALSE THEN
oven.shutdown();

END_IF

Chapter 17 455

For this program, we are going to make an assumption for the sake of the simulated project.
When the program starts, we are going to assume it is safe to enter, hence setting the safe_temp
variable to TRUE. If the power is on, a warning message will be displayed on the alarm table. The
oven at temp LED will be displayed, and the door locked message will trigger as well. If the power
is off, the oven. shutdown method will be called, and if the temperature is below 85°F, the door
will unlock and the safe LED will turn on. An alarm will also be displayed saying the oven is safe

to enter. With this complete, we can now move on to implementing the Alarms function block.

Flaws

V4 Examine the code. Are there fundamental flaws? For example, does the code factor
\Q/‘ in the oven temperature before setting certain variables to TRUE? If it does figure out
a way to fix the flaw. Also, are all the lines of code necessary? Is there any dead code

in the snippet? Finally look at the LED naming conventions, are those all correct?

Alarms function block

The code for the Method blocks should be relatively simple. Essentially, whichever method is

called will set the appropriate alarm. The error method’s code should look like the following:

vars.oven_overTemp := TRUE;
vars.oven_safeTemp := FALSE;
vars.oven_atTemp := FALSE;

With that, we can move on to implementing the info method with the following code:

vars.oven_overTemp := FALSE;
vars.oven_safeTemp := TRUE;
vars.oven_atTemp = FALSE;

Safety Flaw

\/V There is a safety flaw with the safeTemp variable. We shouldn’t always set this to
TRUE. What should you do to ensure the oven is actually safe to enter? Hint: you can

put a control statement for a check.

456 Putting It All Together: The Final Project

As can be deduced from the error and info methods, all we are doing is setting the correct variable

to TRUE. Finally, the warning method should look like the following code snippet:

vars.oven_overTemp := FALSE;
vars.oven_safeTemp := FALSE;

vars.oven_atTemp TRUE;

Safety Flaw

\Q/ Is there a safety flaw here as well? Why or why not? What can you do to improve

this to make it safer and smarter?

The implementation of the methods in the Alarms function block is probably not the most effective.
The code can be simplified to one method. The methods were designed like that on purpose so
that you, the reader, can modify and improve upon the code. After you finish implementing the

project, come back to this section and try to condense and improve upon the code.

After you fully implement this code, we are going to move on to implementing the other function

blocks. Moving down the tree, we are going to implement the method in the Door function block.

Door function block

For things such as doors, it is common to have a large light on the outside of the door as a safety
feature. It is also common to put an LED on the HMI; however, since this is a simulation, for
now, we are only going to have a variable to indicate the door is locked. We are going to add the

following variable to the vars GVL file:

door_status : WSTRING;

After you add that variable to the GVL file, you can start to implement the methods in the Door
function block. For the current iteration of the project, we are only going to display the status of
the door, so the code for these two methods will also be relatively simple. With that being said,
the unlockDoor method should look like the following code snippet:

vars.door_status := "Door is unlocked";
As can be deduced by looking at the unlockDoor method implementation, the doorLock method
will be equally simple, with the following implementation:

vars.door_status := "Door locked";

Chapter 17 457

This should, for the most part, do it for the Door function block. However, much as with the alarm

class, see if you can modify this. See if you can address the following:

e Can you condense these two methods into a single method using control statements?

Does doing this make more or less sense?
¢ How can you modify the HMI and PLC code to support an LED on the HMI screen?
e Should you create a separate HMI visualization for the door?

e Are the door messages consistent? Should these be cleaned up?

Before you address these questions, let’s move on and implement the Oven function block logic.

Oven function block

The final function block that we have to implement is the Oven function block. This function block
will be more complex than the other function blocks as this will be the workhorse of the program.

Ensure that you are carefully following along and keep an eye out for bugs!

The first method that we are going to implementis the rampUp method. In a real-world application,
you assume that when the oven is on, it is dangerous. Similarly, you will want to turn on the red
LED and turn off the green one. This will signal to the operator that the oven is potentially hot
and not to handle any dangerous areas. To accommodate this, we are going to implement the

following two lines of code to simulate this:

vars.ovenOn := TRUE;
vars.safe_temp := FALSE;
vars.target_temp := TRUE;

\E// Bugs

Did you notice any bugs?

Once that logic is in place, we need to move on to our readTemp method. This method is essen-
tially going to be the workhorse of the program. This method will be responsible for firing alarms
to give the temperature status to the operator as well as triggering the rampUp phase when the
ovenisnotalready at temperature. The readTemp method will simply consist of a series of control

statements, as follows:

METHOD PUBLIC readTemp : BOOL
VAR

458 Putting It All Together: The Final Project
alarms : Alarms;
door : Door;
END_VAR
VAR_INPUT
END_VAR

Once you create the alarms variable, you can move on to implementing the logic for the rest of

the method with the following code:

IF vars.oven_temp < vars.target_temp value THEN

rampUp();

alarms
ELSIF vars

alarms
ELSIF vars

alarms
END_IF

.warning();

.oven_temp = vars.target_temp_value THEN
.warning();

.oven_temp > vars.target_temp_value THEN
.error();

Flaws

4
\Q/‘ There are a few flaws in the blocks. Take a look at the code and return type, what

can be improved?

The final function will simply be responsible for putting the oven back into a shutdown mode.

Depending on the type of oven and the shutdown sequence, this method will vary. However, for

this project, we are going to keep it simple; we will reset the red LED to off and the green one to

on when the temperature of the oven is less than 85°F.

To accomplish this, the variables should look like the ones in the following snippet:

METHOD PUBLIC shutdown : BOOL

VAR

door :
END_VAR
VAR_INPUT
END_VAR

Door;

Chapter 17 459

This method will also unlock the door. In real life, there are things such as motion detectors and
so on in the oven to prevent the oven from heating up in case someone or something is inside.
For this project, we are going to keep it simple and ignore that; however, it is recommended that
you go back and add a similar feature to enhance the project. The code to do this will look like

the following:

vars.ovenOn := FALSE;

IF vars.oven_temp < 85 THEN
vars.safe_temp := TRUE;
vars.target_temp := FALSE;
door.unlockDoor();

ELSE
vars.safe_temp := FALSE;
door.lockDoor();

END_IF

D’ Best practice flaw
(G

Notice we have a hard coded value, what can we do to improve this?

Once you have the code in what you feel is a stable state, you can move on to testing the func-

tionality of the program.

Testing the application

Now that we have the code implemented, we can run a few test cases to see if the code works as
expected. If you look at the code, we have an oven_temp variable that in real life would be tied to
some type of thermal sensor. For our purposes, we are going to control it manually to simulate
the conditions inside the oven. In real-world automation programming, this is a common tech-
nique. We don’t always want to heat the oven to the target temperature until we know for sure
the software is working. To control the temperature, we can add a spinner or slider to the HMI.

We could also control the simulated temperature by writing values to the variable.

Testing the door lock

When testing an industrial device, it is typically a good idea to start with testing the safety fea-

tures first. This is because at the very least we want to ensure that the machine is safe to work on.

460 Putting It All Together: The Final Project

We are going to start with the most basic and safety-critical part: testing the door. To do this
we’re going to write out a test case. There are many templates and programs you can download
from the internet. However, for this chapter we’re simply going to use an Excel spreadsheet that

is formatted like Figure 17.15.

We explored the concept of unit testing in prior chapters. What we have not explored is how to
write a unit test on paper. There are many different formats you can use to write unit test cases;

however, all that’s important is to capture the following:
e The functionality the unit test is supposed to capture.
e The values we’re going to affect like inputs, values, and the like.
e The expected behavior.
e The actual behavior.
e The date (optional but recommended)
o Ifthe test passed or not.

The goal for this test is to ensure the door is locking and unlocking properly. For this, we are going

to use the following test case:

Functionality Input Expected Value Actual Value Date Pass(y/n)
door lock power on door locked 10/21/2022

Figure 17.15: Test case

The test case in the preceding screenshot is relatively simple as we are testing a Boolean state. In

other words, the door is either locked or unlocked.

When we run the program and switch the power on, you should get the following if the code works:

@ door_status WSTRING "Doorlocked”

Figure 17.16: Actual door output

If your code passes the test, the full test case should look like the following:

Functionality Input Expected Value Actual Value Date Pass{y/n)
door lock power on door locked door locked 10/21/2022 y

Figure 17.17: Completed test case

Chapter 17 461

The next capability to test is if the door unlocks properly. Testing if the door unlocks will be a
bit more in-depth as the temperature will be a factor. We will need to create a few test cases to
ensure the door unlocks properly. To test the functionality, we can use the test cases in the fol-

lowing screenshot:

Functionality | Input/temp Expected Value Actual Value Date Pass(y/n)
door unlock | power off / 100 door locked 10/21/2022

door unlock power off / 82 door locked 10/21/2022

door unlock | power on /80 door locked

Figure 17.18: Unlock test cases

To test this functionality, we’re going to turn the power variable on, then set the oven_temp variable
to 100, and then finally write the power variable back to FALSE. If your code works, you should see

the door in a locked state, similar to what can be seen in the following screenshot:

@ door_status WSTRING "Doorlocked”
Figure 17.19: Door state for the first test

You can repeat the process with the other temperatures:

Functionality Input/temp Expected Value Actual Value Date Pass(y/n)
doorunlock power off /100 door locked door locked 10/21/2022 y
doorunlock power off / 82 door locked door locked 10/21/2022 y
doorunlock power on /80 door locked door locked 10/21/2022 y

Figure 17.20: Door test cases

Once your code passes the door tests, move on to testing the gauge.

Testing the gauge

Another vital safety component of the oven is the gauge. The gauge is of vital importance as it will
keep the operator informed of the internal temperature of the oven. In theory, the gauge should
show the temperature of the oven. In other words, the gauge should match what the oven_temp
variable is set to. We can come up with a few test cases to verify the functionality of the gauge.
Essentially, what we want to verify is that the value we set the oven_temp variable to is the same

value that is displayed on the gauge.

462 Putting It All Together: The Final Project

With the test criteria established, we can use the test cases in the following screenshot:

Functionality temp Expected Value Actual Value Date Pass(y/n)
gauge 200 200 10/21/2022
gauge 500 500 10/21/2022
gauge 100 100 10/21/2022

Figure 17.21: Gauge test cases

To execute the test, we will set the oven_temp variable and observe the gauge. When you set the

variable to 100, your gauge should match the following reading:

Current Temp

Figure 17.22: Gauge reading for 100°F test case

Repeat the process with the other values to ensure the gauge reflects the proper values.

Functionality temp Expected Value Actual Value Date Pass(y/n)
gauge 200 200 200 10/21/2022 y
gauge 500 500 500 10/21/2022 y
gauge 100 100 100 10/21/2022 y

Figure 17.23: Completed gauge test cases

Next, we're going to test the alarm system. This is another safety-critical functionality as it will

alert the operator to issues.
We should get the following messages in these situations:

e Aninfo message when the oven is safe to enter
e A warning message when the oven is at the target temperature

e Anerror message when the oven is 10°F over the target temperature

Chapter 17 463

With this, we are going to create three basic test cases to test this functionality. Now, in the real
world, you would want at least a few cases for each alarm. This will be up to you to apply what
you’ve learned thus far and apply it to create more cases for the alarm. For this example, we are

going to create three test cases, as follows:

Method targettemp Oventemp Expected Value Actual Value Date Pass(y/n)
error 90 95 No change 10/22/2022
info 70 80 Oven is safe to enter 10/22/2022
warn 90 90 Oven is at temp 10/22/2022

Figure 17.24: Alarm test cases

For the sake of practice, only the first test case will be run. You will be responsible for running

the remainder of the test cases.

According to our requirements, the error alarm should only be on if the oven is 10° over the set

value. When we run the values, we get the following output:

[Timestamp | ‘Message
Target Temp

Safe Temp

®

L\: = l

Figure 17.25: HM status for error test case

As we can see with the default code, these values cause a failure for the test case. The error alarm
should only trigger when the oven_temp variable is atleast 10° over the set value, not 5. Therefore,
we have at least one bug in the program. Now that we have found one bug, perform the rest of
the test cases to see if there are bugs in the software. Moving forward, we have not tested the
LED status. Observe Figure 17.25: do the LEDs seem to work as one would expect? If not, do you
think there is a bug there?

464 Putting It All Together: The Final Project

Upgrades

Nothing in automation stays static. This project was a rough draft of a simulated PLC production

code. There are many ways we can improve the project, for example, we could,

e Addthe door’s lock status to the HMI.

e Digitally track the oven’s temperature with a textbox.

e Replace the spinner with a keypad input.

e Add ablinking LED to indicate the oven is over temperature.
e Addlogic to track if the door is open or closed.

e These are just a few ideas. When it comes to projects like these your imagination is the

only limit!

Summary

Congratulations! You have now completed the book! In this chapter, we have explored creating
a simple oven. We have built this project using a Waterfall-like methodology, and we have gone

through most of the SDLC sections.

In this chapter, we have built the code and HMI for a simulated real-world project. Now, we have
found bugs in the code, and you will be responsible for finding more and retesting fixes for them.
There are no right or wrong ways to solve these bugs and test cases; you are free to use your in-
tuition and what we have covered to fix them. If you are completely stuck, I would recommend

looking at the questions for a punch list of things to fix and a few more test cases to create.

Final thoughts

This book was an introduction to advanced PLC programming. Industry 4.0 is going to drastically
change the automation landscape by introducing new technologies. The key to mastering these
technologies is to understand how to properly architect code and systems. The key takeaway is
that Industry 4.0 is going to force PLC programmers to adjust their hardware first attitudes and
treat software as a first-class citizen. If I could offer any advice to a new PLC programmer, would
recommend learning technologies and techniques that are used in the traditional IT space. OOP
is only one modern technique you should learn as the future of automation will evolve faster

and be faster paced.

Chapter 17 465

Fix it up!
Still unable to fix the buggy code?

Join our Discord space at https://packt.link/embeddedsystems to have a chat with the author

and resolve your doubts.

Get This Book’s PDF Version and
Exclusive Extras

Scan the QR code (or go to packtpub.com/unlock). Search for this
book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

https://packt.link/embeddedsystems

18

Unlock Your Exclusive Benefits

Your copy of this book includes the following exclusive benefits:

e (xNext-gen Packt Reader
e [n| DRM-free PDF/ePub downloads

Follow the guide below to unlock them. The process takes only a few minutes and needs to be

completed once.

Unlock this Book's Free Benefits in 3 Easy Steps
Step 1

Keep your purchase invoice ready for Step 3. If you have a physical copy, scan it using your phone
and save it as a PDF, JPG, or PNG.

For more help on finding your invoice, visithttps: //www. packtpub.com/unlock-benefits/help.

\/‘/' Note: If you bought this book directly from Packt, no invoice is required. After Step 2,

you can access your exclusive content right away.

https://www.packtpub.com/unlock-benefits/help

468 Unlock Your Exclusive Benefits

Step 2

Scan the QR code or go to packtpub.com/unlock.

]

On the page that opens (similar to Figure 25.1 on desktop), search for this book by name and
select the correct edition.

Q. Search..

Subscription E‘ 9

Explore Products Best Sellers Mew Releases Books Videos

Audiobooks Learning Hub Mewsletter Hub Free Learning

Discover and unlock your book's exclusive benefits

Bought a Packt book? Your purchase may come with free bonus benefits designed to maximise your learning. Discover and unlock them here

[]

Discover Benefits Sign Up/In Upload Invoice

Meed Help?
% 1. Discover your book’s exclusive benefits -~
(o} rISBN
CONTINUETO STEP 2
Zo 2. Login or sign up for free v
& 3. Upload your invoice and unlock ~

Figure 25.1: Packt unlock landing page on desktop

http://packtpub.com/unlock

Chapter 18 469

Step 3
After selecting your book, sign in to your Packt account or create one for free. Then upload your

invoice (PDF, PNG, or JPG, up to 10 MB). Follow the on-screen instructions to finish the process.

Need help?

If you get stuck and need help, visit https://www. packtpub.com/
unlock-benefits/help for a detailed FAQ on how to find your
invoices and more. This QR code will take you to the help page.

\/;n{ Note: If you are still facing issues, reach out to customercare@packt.com.

mailto:customercare%40packt.com?subject=

Answer Sheet

Chapter 1- Advanced Structured Text: Programming
a PLC in Easy-to-Read English

1.
2.
3.

4
5.
6
7

Try, catch and finally
Abasic Al that uses a series of IF-THEN statements

A factis something that machine believes to be true a rule or currently knows. A Rule is

IF-THEN logic that uses facts to infer new facts or actions
When a state machines transition from one state to another
Finite State Machine

To catch errors that can crash a program

Diagnostics, inference, etc.

Chapter 2 - Complex Variable Declaration: Using
Variables to Their Fullest

1

© ® N e A W

A Global Variable List that will allow any POU to access the variables declared in them.
GVL

3

A variable that cannot be changed during the program’s execution

The constant is immutable

A DUT that models something

A GVL can be accessed by any POU a struct cannot

Struct

GVLs can introduce bugs because they can be accessed by any POU and they can make

programs hard to troubleshoot due to this reason.

472

Answer Sheet

Chapter 3 - Functions: Making Code Modular and
Maintainable

—_

© L N A W

_
o

11.

A callable block of code

A preset parameter

Default initialization

A parameter value that is mapped by name.

Without default parameters arguments are mapped in a one-to-one manner.

The amount of code necessary to complete a single task that does notinclude the word and.
The data type a function returns.

Yes

A function that can hide and streamline complexity.

Modular code helps keep code more organized and increases it maintainability.

Yes

Chapter 4 - Object-Oriented Programming: Reducing,
Reusing, and Recycling Code

1

2
3
4.
5
6

Class
A method that can call itself
A function block pointer that points to its own function block

Get and Set
Get will retrieve an internal value and Set will set it.

A function that lives in a function block

Chapter 5 - OOP: The Power of Objects

1

2
3.
4

Abstraction, encapsulation, inheritance, and polymorphism
No
One

PUBLIC attributes can be used by a POU that has a reference to the function block. PRIVATE

attributes can only be used by attributes internal to the function block

PROTECTED can only be used by internal attributes or by derived function block attributes

473

6. No
7. When two function blocks use an “is-a” relationship

8. When two blocks use an “has-a” relationship

Chapter 6 - Best Practices for Writing Incredible
Code

Keep it simple, stupid. Essentially, keep your projects as simple as possible

—_

Code that does not contribute to the success of a program
Code that cannot be ran in the program
robotElbowJoint

A short summary of a key piece of information

An unneeded summary of what something does

Any time you need to manipulate or compare a value

® N oo s W

Allletters of first word are lower case, and the first letter of each subsequent word is upper

case. Example, camelCaseNaming
9. The firstletter of each word is upper case. Example, PascalCaseNaming

10. Each word is separated by an underscore. Example, snake_case.

Chapter 7 - Libraries: Write Once, Use Anywhere
1. Prebuilt code that can augment your project.
2. Itisthe necessary literature/instructions for how to use the library.
3. MIT, BSD, Apache
4

Facade; however, other good patterns that were not explored are Factories and Singletons

Chapter 8 - Getting Started with Git

1. The main branch checked out into an isolated area that allows you to modify it without

corrupting the main branch
Aversion control system
Gitis a CLItool thatis used in conjunction with a code repository management like GitLab

git clone <url>

A R

Local repos live on your computer remote repos live in the repository management system

474 Answer Sheet
6. Pull code from the remote repository, think of this like an update
7. gitbranch -awill show all the repos you have access to while git branch -r will only show
the remote branches you have access to
8. git checkout -b <branch> or git switch -c <branch>
9. Stages all the files in the directory for committal

Chapter 9 - SDLC: Navigating the SDLC to Create
Great Code

1.
2.

N oo ow

8.

An iterative approach to completing a software project

The main ceremonies are as follows:

e Sprint planning
e Daily standup

e Sprintreview

e Retrospective

e Backlogrefinement

A set of steps that need to be followed to implement a software project
Typically, 5-6, but this can vary

Arigid and sequential methodology to implement the SDLC
Requirements

A basic SDLC outline will include:

a. Requirements
b. Design
c. Implementation/code
d. Testing
Deployment

f. Maintenance

The phase where the program’s structure is defined, diagrams are produced, and more

475

Chapter 10 - Architecting Code with UML

1. Unified Modeling Language

2. Any of these

I

+

10. #

Sequence diagrams
Object diagrams
Component diagrams
Activity diagrams

Timing diagrams
Communication diagrams
Package diagrams

Profile diagrams

Use case diagrams

State machine diagrams

Name -> variables -> methods
An arrow

A diamond

It helps flesh out a design, convey information, and find errors/oversights.

To model class/function blocks and their relationships.

Chapter 11 - Testing and Troubleshooting

1. Using message variables to trace the flow of program

Using a debugger

2
3. Aseries of steps that can be used to help find and eliminate bugs
4

You can use prompts to formulate a query

476

Answer Sheet

Chapter 12 - Advanced Coding: Using SOLID
to Make Solid Code

1.
2.

Functions, methods, function blocks, classes, structs, interfaces, microservices.

Break what comes out after the and into a module of its own. For example, break out a

method with the word and in a sentence into two methods.
Use slimmer, more specific interfaces over larger ones.

The SOLID principles are as follows:

a. S:Single-responsibility principle
b. 0O:Open-closed principle

c. L:Liskov substitution principle
d. I:Interface segregation principle

e. D:Dependency inversion principle

Chapter 13 - Industrial Controls: User Inputs
and Outputs

L

2
3.
4

A control that can be pressed to perform an action.
Arrays
Yes

We can but it is not recommended.

Chapter 14 - Layouts: Making HMIs User-Friendly

—_

Green = Good or Go, Yellow = Warning, Red = Error or Stop
Gray

One

Home screen

Set the control’s invisible field to TRUE

477

Chapter 15 - Alarms: Avoiding Catastrophic Issues
with Alarms

1

2
3
4.
5
6

Anything that is designed to get the operator’s attention
Error

Info/All good

Warning

Alarm configuration for logically related alarms

An operator confirming they see the alarm

Chapter 16 - DCSs, PLCs, and the Future

1

2
3.
4

© o N oo v

13.

Distributed Control System: Device that can oversee a distributed process
Digital simulation of something
No

Whitelisting only allows notated traffic through a network. Blacklisting blocks notated
traffic from flowing though the network

A program/device that can block traffic

Distributed Denial of Service: An attack that is meant to render your network inoperable
No

Scrambling your data so it cannot be read by hackers

A small, self-contained portion of a larger system

. Solving tasks in parallel normally on a GPU

Using multiple computers to do a task

. UDP will essentially spray data, and nothing is guaranteed UDP is faster than TCP. TCP is

slower but ensures data arrives correctly. TCP uses a three-way handshake UDP does not

Ring

<packt

packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as

industry leading tools to help you plan your personal development and advance your career. For

more information, please visit our website.

Why subscribe?

Spend less time learning and more time coding with practical eBooks and Videos from

over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you
Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Atwww.packtpub. com, you can also read a collection of free technical articles, sign up for arange

of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://packtpub.com

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Industrial Avtomation
from Scratch

QLUSHOLA. AKANDE

Industrial Automation from Scratch
Olushola Akande

ISBN: 978-1-80056-938-6

e Getto grips with the essentials of industrial automation and control

e Find out how to use industry-based sensors and actuators

e Know about the AC, DC, servo, and stepper motors

e Getasolid understanding of VFDs, PLCs, HMIs, and SCADA and their applications

e Explore hands-on process control systems including analog signal processing with PLCs

e Getfamiliarized with industrial network and communication protocols, wired and wire-

less networks, and 5G

e Explore current trends in manufacturing such as smart factory, IoT, Al, and robotics

https://www.packtpub.com/en-in/product/industrial-automation-from-scratch-9781800566903

482 Other Books You May Enjoy

packh

-

LT

47
CCH+

in Embedded -
[Systems

» &peactizsl brovsifior from C-omedern £

g

=T .
LI AMAR MAHMUTBEGGVIC

Lo =t

& i 5
—
H b e Lo
=

nEotlns ddbna-

C++in Embedded Systems
Amar Mahmutbegovi¢
ISBN: 978-1-83588-114-9

e Debunk myths and misconceptions about using C++ in embedded systems

e Setup build automation tailored for C++ in constrained environments

e Leverage strong typing to improve type safety

e Apply modern C++ techniques, such as Resource Acquisition Is Initialization (RAII)
e Use Domain Specific Language (DSL) with a practical example using Boost SML

e Implement software development best practices, including the SOLID principle, in em-

bedded development

https://www.packtpub.com/en-in/product/c-in-embedded-systems-9781835881156

Other Books You May Enjoy 483

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packt.com and apply
today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general applica-

tion, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts

Now you've finished Mastering PLC Programming, Second Edition, we’d love to hear your thoughts!
Scan the QR code below to go straight to the Amazon review page for this book and share your

feedback or leave a review on the site that you purchased it from.

https://packt.link/r/1836642555

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

https://packt.link/r/1836642555

Symbols

1D arrays 42

A

abstraction 128,129

access specifiers 124
private 124-128
protected 125,137-139
public 124

acknowledgment (ACK) 422, 447

active recon 433

adderLib library 175

ADR operator 18

Agile ceremonies
backlog refinement 235
daily standup 235
retrospective 235
sprint planning 235
sprint review 235

Agile framework 234-236

Al
pitfalls 286

Al troubleshooting
future 286

Index

alarm acknowledgment 409
logic 409, 410

alarm configuration 392
adding 392-394
alarm groups 395, 396
HMI components 397, 398

alarm HMI components 397
alarm table 397
alarm table, setting up 400-402
banner 397
banner, setting up 398-400

alarms 390
applications 391
cybersecurity alarms 391
issue/warning 392
logging 392

alarms function block 455, 456

Alarm table
configuration 451
alarm table variables 449, 450
configuration 451
Error class setup 450
Info class configuration 451
Warning class configuration 451
animation 369

Apache Spark 420

486 Index

Application Programming breakpoints 278
Interface (API) 317,438 creating 279

arguments 73,78,79 demonstrating 279-282
default arguments 81-83 bugs 262

arrays 40,41 functional errors 262
1D arrays 42 logic errors 262
declaring 41 syntax errors 262
logic 41,42 buttons 337
multidimensional arrays 43
n-dimensional arrays 43-45 C

artificial intelligence (Al) 27 .
& (A1 camel casing 155

Car function block 253

casing conventions 155

automated testing 268

automation device communication 424

B camel casing 155
Pascal casing 156
backgrounds 358-360 snake casing 156
backlog 235 ChatGPT 284, 438
backlog refinement 235 code, troubleshooting 285, 286
bar graph 341 prompts, constructing 284
black-box testing 266 class 92
blacklisting 435 class diagram 245
blinking cloud
animation 369 in industrial settings 439
best practices 364, 365 code commenting
component 366-369 bad comments 161, 162

block diagrams 229 good comments 161

Brakes function block 252 code documentation 157
code commenting 160-162

branches . .
. coding, to variables 159, 160
checking 215 . .
. self-documenting code, utilizing 158, 159
deleting 216

code review 164
considerations 164, 165

git pull command, using 216
intermediate branches 215
naming 215 code rot 163

reviewers 215 CODESYS 70,71, 262, 269, 278, 332

Index

487

CODESYS Professional Developer
Edition 269

colors 358
backgrounds 358-360
control colors 361
green 361
labeling colors 361, 362
red 360
yellow 360
Comma Separated Values (CSV) files 172
component
blinking 366-369
composition 139
demonstrating 140-143
concurrency 421
constants 38, 40,58
declaring 39
use cases 39
control colors 361
control properties 346-348
custom library
building 188
distribution 195
documentation hints 194
implementation 189-193
licensing 195
project improvements 194
requirements 188
cybersecurity 433
loT 419

D

daily standup 235
data at rest 435
data in transit 435

datain use 435

data unit type (DUT) wizard 54, 55, 66,67

dead code 162, 163, 266
eliminating 162, 163

Debian-based system
Git, installing on 205
debuggers 270,278

debugging 262,263,270
hardware pitfall 272
print debugging 272-277
process 270,271
default arguments 80-83
default passwords
usage, avoiding 434
Denial of Service (DOS) 434

dependency inversion

principle (DIP) 317,318

implementing 318-321
device communication 422
digital twins 438,439
Disable Breakpoint 280
disaster recovery (DR) 203
distributed computing 420
Distributed Control

Systems (DCSs) 420, 430-432

applications 431

Distributed Denial of Service (DDoS) 434

door function block 456,457
dynamic ports 436

E

electrical and wiring diagrams 229

Emerson DeltaV 432

488

Index

Enable Breakpoint 280
encapsulation 128,129
encryption 435

Engine function block 251
entry point 182
enumeration (enum) 58-60
ephemeral ports 436

Error class
setup 450

error handling 8-11
custom exceptions, handling 15, 16
errors, identifying 14
Exception variable 14, 15
FINALLY statement 13, 14
TRY-CATCH block 11-13

Ethernet for Control Automation Technology
(EtherCAT) 428,429

EtherNet/IP 430
exceptions 8

Exception variable 14,15
expert machines 27

expert systems 27, 28
example 29,30
knowledge base 28

eXtensible Markup Language (XML)
format 217

F

fault diagnosis 28

features, modular code
code removability 68
code scalability 68
code upgrades 68
reusability 68

Fedora-based system
Git, installing on 204
FINALLY statement 13
finite state machine (FSM) 25
components 25
firewalls 434
configuring 434
flip switches 335, 336
flowchart designs 229
framework 174
function 69
calling, from function 83
creating 71-74
naming 69
rules 70
simplifying, with facades 83-86
functional errors 262
functional testing 266,267
function block 92,95-98
naming 106
representing, in UML 246
using,inLL 114

G

gauge variable 448,449
generic except block 14
Get method

using 110
getters 107, 108
Git 204, 206

installing, on Linux 204
installing, on Windows 205

Git Bash 205

Index

489

Git CLI
branch, checking out 213,214
branches, implementing 210-213
code changes, merging 214
repo, cloning 208-210
using 207
Git installation on Linux 204
Debian installation 205
Fedora installation 204
Git installation on Windows
Git Bash installation 205
WSL installation 205
GitLab 206, 207
project, modifying 219
project solution 220
global variable lists (GVLs) 46, 446
creating 48,49
demonstrating 49, 50
organizing 50, 51
global variables 46, 47
dangers 47
safety considerations 52
usage scenarios 47,48
Graphics Processing Units (GPUs) 421
green 361
grouping 362-364
guiding principles, library development 180
abstraction 181,182
documentation 183-187
encapsulation 181, 182
Facade pattern 182,183
KISS 181

H

Hadoop 420
histograms 342, 343

HMI controls 335
buttons 337
control properties 346-348
flip switches 335, 336
histograms 342, 343
LEDs 338
measurement controls 341, 342
potentiometers (pots) 338
push switches 336
sliders 339
spinners 340
text fields 343-346

HMI implementation, industrial ovens 446
acknowledgment variable 447
alarm table variables 449, 450
gauge variable 448,449
LED variables 446
spinner variable 447,448

human-machine interface (HMI) 329, 330
adding 333-335
basic principles, for designing 332
building 349-353
components, hiding 378
default screen, creating 373-376
design 331
designing 348, 349
requirements 348
responsibility 332,333
screen, organizing into multiple layouts 370
screens, navigating 376-378
visualizations screens, creating 370-373

IEC 61131-3 standard 5,6
OO0OP 6,7

immutable variable 38

490

Index

industrial ovens
application, testing 459
door lock, testing 459-461
gauge, testing 461-463
HMI design 445
HMIimplementation 446
PLC code design 452,453
PLC code, implementing 453
project overview 443
requirements gathering 443, 444
upgrades 464

Industrial Protocol (IP) 430

Industry 4.0 418
goal 418

Info class
configuration 451

inheritance 56, 130-135, 139, 140
inheritance chain 133,135

integrated development environments
(IDEs) 262

integration testing 268

interfaces
examining 143-148

interface segregation principle (ISP) 315
implementing 316, 317

Internet Protocol (IP) 422

invalid pointer 19
IF statements 21

TRY-CATCH invalid pointer program 21, 22

loT 418
cybersecurity 419

loT devices 420

K

Keep It Simple, Stupid (KISS) 163, 164

L

labeling colors 361,362
Ladder Diagram (LD) 101

Ladder Logic (LL) 4
library, using 178,179

lamps 338

large language models (LLMs) 284
LEDs 338

LED variables 446

library 172,173

importing 174

installing 175-177

uses 172,173

using, in Ladder Logic (LL) 178,179
library development

guiding principles 180-187
Linux

Git, installing on 204

Liskov substitution principle (LSP) 308
implementing 309
rectangle function block 309, 310
square function block 310-314

local branch 215
logic errors 262

loop 45

manual testing 269
measurement controls 340-342
mechanical diagrams 229

merge request 214

Index

491

method 96, 99
adding 99, 100
challenge 101-103
Get method 110
Set method 110

microservices 437

Modbus 424-426

Modbus ASCII 425

Modbus RTU 425

modular code 66
creating 66, 67
definition 66
features 68

strategies, for creating 67, 68

motor alarm system project

creating 410

HMI implementation 411, 412

motor control program 60-62

Movicon 331

multidimensional arrays 43

declaring 43

multiple car programming project 255
diagram, redrawing with function block

attributes 257

relationship analysis 255
relationship summary 256

UML diagram 256

mutable variable 38

named parameters 79, 80

naming conventions 155
casing conventions 155, 156

function blocks 157

methods and functions 156
naming methods and functions 157

variable names 156

n-dimensional arrays

looping through 45, 46

working with 43-45
networking 422
neutral colors 360
Nmap 436
null pointers 8

o

object-oriented design (OOD) principles 296

object-oriented programming
(OOP) 3,91,92, 123,128

abstraction 128-130

encapsulation 128-130

inheritance 130-135
misconceptions 93

non-technical benefits 94
polymorphism 135,136
technical benefits 95

objects 103-106

open-closed principle (OCP) 303
implementing 303-308
oven function block 457-459

P

painting machine 322

designing 322,323

parallel computing 421

parameters 73

named parameters 79, 80

Pascal casing 156

492

Index

passive recon 433
PLC alarm logic 403-408
PLC code, industrial ovens
alarms function block 455, 456
door function block 456, 457
oven function block 457-459
PLC_PRG file 454,455
PLCOpen XML 6,217,218
PLC_PRG file 67, 68, 454, 455
PLCs 424,432
pointers 16
ADR operator 18
dereferencing 19
general syntax 17, 18
invalid pointer 19
invalid pointers, catching 20
invalid pointers, handling 20
PLC memory, representing 17
polymorphism 135,136
ports 436
unused ports, turning off 436
potentiometers (pots) 338, 339
print debugging 270-277
private access specifier 124-127
private ports 436
Profibus 426, 427
Profinet 427, 428

programmable logic controller (PLC)

programming 3
programming paradigm 6
programming software 7

Program Organizational Units
(POUs) 47,66,67,283

prompt engineering 438

prompts
constructing 284

properties 107-109
rules 111,112

protected access specifier 125, 137-139

pseudocode designs 229
public access specifier 124

push switches 336

R

reconnaissance 433

recursion 112
demonstrating 113,114

red 360

Red Hat Enterprise Linux (RHEL) 204

reference 22
discovering 22
example program 23

invalid references, checking for 24, 25

reference variable, declaring 22
regression testing 267
release branching 215
repository 206
retrospective 235
RETURN statement 76, 77
takeaways 77
return types
examining 75
takeaways 75

S

SCADA system 432,433

segmentation 436

Index

493

self-documenting code
utilizing 158, 159

semantic versioning 188

Set method 110

setters 107, 108

side navigation 362

simple state machine
designing 30
logic, exploring 31, 32
non-running state machine 32, 33
running 33
state machine exception thrown 33
variables 31

simulated assembly line
creating 148-150

single-responsibility principle

(SRP) 298, 299, 453

implementing 299-302

sliders 339, 340

smart devices 418

smart factory 418

smart sensors 419

snake casing 156

software and learning approach 7

Software Development
Lifecycle (SDLC) 223-225

requirements gathering 226-228
software, building 229, 230
software, deploying 231
software, designing 228, 229
software, maintaining 231, 232
software, testing 230

software engineering
bad practices 166, 167

SOLID principles 298

dependency inversion principle 317,318

interface segregation principle 315
Liskov substitution principle 308
open-closed principle 303
single-responsibility
principle (SRP) 298, 299
SOLID programming 296
benefits 297
source control 201
spinners 340
spinner variable 447, 448
sprint 234
sprint planning 235
sprint review 235
staging branching 215
Standard Template Library (STL) 173
state machines 25
code 26
mechanics 26,27
Step Into command 283
Step Out command 283
Step Over command 282-284
stepping 282
strategies, modular code
amount of code in PLC_PRG file,
limiting 67, 68
separation of responsibilities 68
structs 52
declaring 52,53
DUT wizard 54,55
implementing 53, 54
inheriting with 56-58
multiple objects 55, 56

494

Index

Structured Text (ST) 3,101,178
inLL 115-117
switch 335

synchronization/acknowledgment
(SYN/ACK) 422

synchronization (SYN) request 422

syntax errors 262

T

TCP/IP 422

technical debt 154

temperature conversion program 236
designing 237
maintaining 240
project, building 238,239
project, deploying 240
requirements gathering 237
testing 239

temperature unit converter 86-88

test cases 264

testing 262, 263
automated testing 268
black-box testing 266
functional testing 266, 267
integration testing 268
manual testing 269
regression testing 267
unit testing 264-266
validation testing 263
verification testing 263

Test Manager 269
text field 343-346
the big three 124

THIS keyword 112

three-way handshake 422
Toggle Breakpoint 280

Transmission Control
Protocol (TCP) 422-424

Transmission function block 252

troubleshooting
practical example 287-292

Truck function block 253

TRY-CATCH block 11
implementing 12,13

TwinCAT 71

U

UML diagrams 244, 245
basics 246
Brakes function block 252
Car function block 253
code, converting to 254
converting, into code 250, 251
Engine function block 251
Transmission function block 252
Truck function block 253
Vehicle function block 252
UML relationship lines 249
UML relationship symbols 249
Unified Modeling Language
(UML) 229, 243-245
access specifiers, representing 248
data types and arguments 248
for composition 250
for inheritance 249
function block’s name 247
function blocks, representing 246, 247
importance 246
methods and variables, representing 247
uses 245

Index

495

unit converter
creating 117-120

unit testing 264, 266
unreachable code 163, 266

User Datagram Protocol (UDP) 422-424
send/receive process 423

user-friendly carwash HMI 379
goals 379
improvement challenges 387
layout 380-386
PLC code 379,380

user stories 227,228
Util library 366

\')

validation testing 263

variables
immutable variable 38
mutable variable 38

Vehicle function block 252
verification testing 263

version control 200, 201
myths and misconceptions 202,203

Virtual Private Networks (VPNs) 436
visual analysis 277,278
V-model 233,234

W

Warning class
configuration 451

Waterfall method 233
whitelisting 435

Windows
Git, installing on 205

wire frames 229
WSL instance 205

Y

yellow 360

	Cover
	Title page
	Copyright and credit
	Contributors
	Table of Contents
	Preface
	Free Benefits with Your Book

	Advanced Structured Text
	Chapter 1: Advanced Structured Text: Programming a PLC in Easy-to-Read English
	Free Benefits with Your Book
	Technical requirements
	Exploring the IEC 61131-3 standard
	IEC 61131-3 and OOP

	Needed software and learning approach
	Programming software

	Error handling
	Understanding the TRY-CATCH block
	FINALLY statements
	Identifying and handling errors
	Exception variables
	Handling custom exceptions

	Understanding pointers
	Representing PLC memory
	General syntax for pointers
	The ADR operator
	Dereferencing pointers
	Handling invalid pointers
	Catching an invalid pointer
	IF statements for invalid pointers
	TRY-CATCH for invalid pointer variables

	Discovering references
	Declaring a reference variable
	Example program
	Checking for invalid references

	State machines
	State machine code
	State machine mechanics

	Expert systems
	Knowledge base
	Expert system example

	Final project: Making a simple state machine
	State machine design
	Variables for the state machine
	Exploring state machine logic
	Case 1 – non-running state machine
	Case 2 – running state machine
	Case 3 – state machine exception thrown

	Chapter challenge
	Summary
	Questions
	Further reading

	Chapter 2: Complex Variable Declaration: Using Variables to Their Fullest
	Technical requirements
	Understanding constants
	Investigating arrays
	A quick review of arrays
	Array declaration
	Array logic

	Multidimensional arrays
	Multidimensional array pattern
	Working with n-dimensional arrays
	Looping through an n-dimensional array

	Exploring global variable lists
	What is a global variable?
	Dangers of global variables
	When to use a global variable
	Creating a GVL
	Demonstrating a GVL
	Organizing GVLs
	Safety considerations for global variables

	Understanding structs
	Declaring a struct
	Implementing a struct
	DUT wizard
	Multiple objects

	Inheriting with structs

	Getting to know enums
	Final project: Motor control program
	Summary
	Questions
	Further reading

	Chapter 3: Functions: Making Code Modular and Maintainable
	Technical requirements
	What is modular code?
	A definition of modular code
	How code is organized
	Strategies for creating modular code
	Limiting the amount of code in the PLC_PRG file
	Separation of responsibilities

	Why use modular code?
	Exploring functions
	The art of naming functions
	What goes into a function?
	Creating a function

	Examining return types
	The RETURN statement

	Understanding arguments
	Named parameters
	Default arguments

	Calling a function from a function!
	Simplifying your functions with facades
	Final project: Temperature unit converter
	Chapter challenge
	Summary
	Questions
	Further reading

	Chapter 4: Object-Oriented Programming: Reducing, Reusing, and Recycling Code
	Technical requirements
	What is OOP?
	What OOP is not

	Why OOP should be used
	The benefits of OOP
	The four pillars: a preview

	Exploring function blocks
	Exploring methods
	Adding methods
	Challenge

	Getting to know objects
	Function block naming
	Getting to know getters and setters
	Getting to know properties
	Using the Get method
	Using the Set method
	The rules of properties

	Understanding recursion and the THIS keyword
	The THIS keyword
	Recursion in action

	Using function blocks in LL
	Exploring the power of ST in LL
	Challenge

	Final project: Creating a unit converter
	Summary
	Questions
	Further reading

	Chapter 5: OOP: The Power of Objects
	Technical requirements
	Understanding access specifiers
	Exploring the different types of access specifiers
	PRIVATE access specifier in action

	Exploring the pillars of OOP
	Encapsulation versus abstraction
	Inheritance
	Polymorphism

	Exploring the PROTECTED access specifier
	Inheritance versus composition
	When to use composition
	Composition in practice

	Examining interfaces
	Final project: Creating a simulated assembly line
	Summary
	Questions
	Further reading

	Chapter 6: Best Practices for Writing Incredible Code
	Technical requirements
	What is technical debt?
	Understanding naming conventions
	Casing conventions
	Proper variable names
	Properly naming methods and functions
	Naming function blocks

	Exploring code documentation
	Utilizing self-documenting code
	Coding to variables
	Code commenting
	Good comments
	Bad comments

	Understanding and eliminating dead code
	Keeping it simple
	What to look for in a code review
	Things to avoid in software engineering
	Fitting a problem into a solution
	Fixing hardware with software
	Having only one code reviewer

	Final project: Performing a simulated code review
	Summary
	Questions

	Chapter 7: Libraries: Write Once, Use Anywhere
	Technical requirements
	Investigating libraries
	Libraries versus frameworks
	Understanding libraries
	Understanding frameworks

	Importing a library
	Installing a library
	Using a library in Ladder Logic
	Guiding principles for library development
	Rule 1: Remember KISS
	Rule 2: Abstraction and encapsulation
	Rule 3: Use the Façade pattern liberally
	Rule 4: Documentation
	Semantic versioning

	Final project: Building a custom library
	Requirements
	Implementation
	Project improvements
	Documentation hints
	Distribution

	Get This Book’s PDF Version and Exclusive Extras

	Summary
	Questions

	Part 2: Software Engineering for Automation
	Chapter 8: Getting Started with Git
	Technical requirements
	What is version control?
	What version control is not
	Source control is only for large teams
	Source control is a security risk
	Version control is the same thing as a shared file system

	Understanding Git
	Installing Git on Linux
	Fedora installation
	Debian installation

	Installing Git on Windows
	Git Bash installation
	WSL installation

	Understanding GitLab
	Using the Git CLI
	Cloning a repo
	Implementing branches
	Checking out a branch
	Merging code changes

	Understanding branches
	Exploring PLCopen XML
	Final project: Modifying a project
	Final project: Solution

	Summary
	Questions
	Further reading

	Chapter 9: SDLC: Navigating the SDLC to Create Great Code
	Technical requirements
	Understanding the SDLC
	The general steps of the SDLC
	Gathering the requirements
	Designing the software
	Building the software
	Testing the software
	Deploying the software
	Maintaining the software

	Understanding how to implement the SDLC
	The Waterfall method
	The V-model
	The Agile framework

	Final project: Creating a simple temperature converter
	Gathering requirements for the program
	Designing the program
	Building the project
	Testing the program
	Deploying the project
	Maintaining the program

	Summary
	Questions
	Further reading

	Chapter 10: Architecting Code with UML
	Technical requirements
	Understanding UML
	What is UML used for?
	Why is UML important?

	The basics of drawing a UML diagram
	Representing function blocks in UML
	UML name
	Representing methods and variables
	Representing access specifiers
	UML data types and arguments

	Understanding UML relationship lines
	The basic UML relationship symbols
	UML for inheritance
	UML for composition

	Converting UML diagrams into code
	Engine function block
	Transmission function block
	Brakes function block
	Vehicle function block
	Car function block
	Truck function block
	Chapter challenge

	Final project: Modeling a program representing multiple cars
	Getting started
	Relationship analysis
	Relationship summary
	Basic UML diagram
	Chapter challenge

	Summary
	Questions

	Chapter 11: Testing and Troubleshooting
	Technical requirements
	Difference between debugging and testing
	What is debugging?
	What is testing?

	Verification and validation
	What is verification testing?
	What is validation testing?

	Various types of testing
	Exploring test cases
	Unit testing
	Functional testing
	Regression testing
	Integration testing
	Automated versus manual testing

	Debugging tools and techniques
	Breaking down the debugging process
	Understanding the hardware pitfall
	Practicing print debugging
	Understanding visual analysis
	Exploring debuggers
	Exploring breakpoints
	Exploring stepping

	Debugging with ChatGPT
	Constructing prompts
	Troubleshooting code with AI
	The future of AI troubleshooting
	AI pitfalls

	Troubleshooting: A practical example
	Chapter challenge

	Summary
	Questions
	Further reading

	Chapter 12: Advanced Coding: Using SOLID to Make Solid Code
	Technical requirements
	Introducing SOLID programming
	Benefits of SOLID programming
	The governing principles of SOLID programming
	The single-responsibility principle
	Implementing the SRP

	The open-closed principle
	Implementing the OCP

	Liskov substitution principle
	Implementing the LSP
	The square function block

	Interface segregation principle
	Implementing the ISP

	Dependency inversion principle
	Implementing the DIP

	Final project: design a painting machine
	Summary
	Questions
	Further reading

	Part 3: HMI Design
	Chapter 13: Industrial Controls: User Inputs and Outputs
	Technical requirements
	Introduction to HMI design
	How are HMIs made?
	Basic principles for designing an HMI
	The responsibility of an HMI
	Adding an HMI

	Exploring common HMI controls
	Flip switches
	Push switches
	Buttons
	LEDs
	Potentiometers
	Sliders
	Spinners
	Measurement controls
	Histograms
	Text fields
	Control properties

	Final project: Creating a simple HMI
	Requirements for the HMI
	Designing the HMI
	Building the HMI

	Summary
	Questions
	Further reading

	Chapter 14: Layouts: Making HMIs User-Friendly
	Technical requirements
	The importance of colors
	Backgrounds
	Red, yellow, and green
	Control colors
	Labeling colors

	Understanding grouping/position
	Best practices for blinking
	Blinking a component
	Animation

	Organizing the screen into multiple layouts
	Creating a visualizations screens
	Changing the default screen
	Navigating between screens
	Hiding components

	Final project: Creating a user-friendly carwash HMI
	HMI goals
	PLC code
	HMI layout
	Improvement challenges

	Summary
	Questions
	Further reading

	Chapter 15: Alarms: Avoiding Catastrophic Issues with Alarms
	Technical requirements
	What are alarms?
	When should you use an alarm?
	Cybersecurity alarms
	What should an alarm say?
	Logging alarms

	Alarm configuration: info, warning, and error setup
	Alarm groups
	Alarm HMI components
	Setting up an alarm banner
	Setting up an alarm table

	PLC alarm logic
	Alarm acknowledgment
	Acknowledging alarms logic

	Final project: motor alarm system
	Getting started
	Design/implementation of the HMI

	Summary
	Questions
	Further reading

	Part 4: Putting Knowledge Into Action
	Chapter 16: DCSs, PLCs, and the Future
	What is Industry 4.0?
	What is IoT?
	Cybersecurity and IoT

	Exploring distributed and parallel computing
	Understanding distributed computing
	Understanding parallel computing

	Exploring networking
	TCP/IP
	UDP
	PLC/automation device communication
	Modbus
	Profibus
	Profinet
	EtherCAT
	EtherNet/IP

	Exploring DCSs
	DCS applications
	Understanding the difference between PLCs and DCSs

	Exploring SCADA
	Exploring cybersecurity
	Understanding reconnaissance
	Avoiding the use of default passwords
	Configuring firewalls
	Whitelisting and blacklisting

	Implementing encryption
	Turning off unused ports
	Exploring segmentation

	Emerging technologies
	Exploring microservices
	Prompt engineering
	Understanding digital twins
	The cloud in industrial settings

	Summary
	Questions

	Chapter 17: Putting It All Together: The Final Project
	Technical requirements
	Project overview
	Gathering the requirements
	HMI design
	HMI implementation
	LED variables
	Acknowledgment variable
	Spinner variables/setup
	Gauge variable/setup
	Alarm table variables/configuration
	Error class setup
	Warning class configuration
	Info class configuration
	Alarm table configuration

	PLC code design
	Implementing the PLC code
	PLC_PRG file
	Alarms function block
	Door function block
	Oven function block

	Testing the application
	Testing the door lock
	Testing the gauge
	Upgrades

	Summary
	Final thoughts
	Fix it up!

	Chapter 18: Unlock Your Exclusive Benefits
	Answer Sheet
	Other Books You May Enjoy
	Index

